OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics


  • Editor: Govind Agrawal
  • Vol. 6, Iss. 2 — Jun. 30, 2014

Real photonic waveguides: guiding light through imperfections

Daniele Melati, Andrea Melloni, and Francesco Morichetti  »View Author Affiliations

Advances in Optics and Photonics, Vol. 6, Issue 2, pp. 156-224 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Real photonic waveguides are affected by structural imperfections due to fabrication tolerances that cause scattering phenomena when the light propagates through. These effects result in extrinsic propagation losses associated with the excitation of radiation and backscattering modes. In this work, we present a comprehensive review on the extrinsic loss mechanisms occurring in optical waveguides, identifying the main origins of scattering loss and pointing out the relationships between the loss and the geometrical and physical parameters of the waveguides. Theoretical models and experimental results, supported by statistical analysis, are presented for two widespread classes of waveguides: waveguides based on total internal reflection (TIR) affected by surface roughness, and disordered photonic crystal slab waveguides (PhCWs). In both structures extrinsic losses are strongly related to the waveguide group index, but the mode shape and its interaction with waveguide imperfections must also be considered to accurately model the scattering loss process. It is shown that as long as the group index of PhCWs is relatively low (ng<30), many analogies exist in the radiation and backscattering loss mechanisms with TIR waveguides; conversely, in the high ng regime, multiple scattering and localization effects arise in PhCWs that dramatically modify the waveguide behavior. The presented results enable the development of reliable circuit models of photonic waveguides, which can be used for a realistic performance evaluation of optical circuits.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(290.0290) Scattering : Scattering
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: November 14, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 24, 2014
Published: May 9, 2014

Virtual Issues
(2014) Advances in Optics and Photonics

Daniele Melati, Andrea Melloni, and Francesco Morichetti, "Real photonic waveguides: guiding light through imperfections," Adv. Opt. Photon. 6, 156-224 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961). [CrossRef]
  2. E. R. Schineller, R. P. Flam, and D. W. Wilmot, “Optical waveguides formed by proton irradiation of fused silica,” J. Opt. Soc. Am. 58, 1171–1173 (1968). [CrossRef]
  3. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969). [CrossRef]
  4. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010). [CrossRef]
  5. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010). [CrossRef]
  6. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994). [CrossRef]
  7. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  8. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003). [CrossRef]
  9. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12, 1551–1561 (2004). [CrossRef]
  10. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  11. A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977). [CrossRef]
  12. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef]
  13. G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol. 29, 744–749 (2011). [CrossRef]
  14. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17, 12470–12480 (2009). [CrossRef]
  15. F. Ladouceur, J. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron. 141, 242–248 (1994). [CrossRef]
  16. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997). [CrossRef]
  17. F. Ladouceur and J. Love, Silica-Based Buried Channel Waveguides and Devices, Optical and Quantum Electronics Series (Chapman & Hall, 1996).
  18. M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008). [CrossRef]
  19. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010). [CrossRef]
  20. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006). [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  22. J. A. Ogilvy and J. R. Foster, “Rough surfaces: Gaussian or exponential statistics?” J. Phys. D 22, 1243–1251 (1989). [CrossRef]
  23. J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–288 (1990). [CrossRef]
  24. F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994). [CrossRef]
  25. F. Ladouceur, J. Love, and T. Senden, “Measurement of surface roughness in buried channel waveguides,” Electron. Lett. 28, 1321–1322 (1992). [CrossRef]
  26. M. Gottlieb, G. Brandt, and J. Conroy, “Out-of-plane scattering in optical waveguides,” IEEE Trans. Circuits Syst. 26, 1029–1035 (1979). [CrossRef]
  27. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000). [CrossRef]
  28. S. Afifi and R. Dusséaux, “Statistical study of radiation loss from planar optical waveguides: the curvilinear coordinate method and the small perturbation method,” J. Opt. Soc. Am. A 27, 1171–1184 (2010). [CrossRef]
  29. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004). [CrossRef]
  30. T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005). [CrossRef]
  31. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001). [CrossRef]
  32. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef]
  33. X. Fengnian, S. Lidija, and V. Yurii, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007). [CrossRef]
  34. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011). [CrossRef]
  35. B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in {C2F6} inductively coupled plasma,” Solid-State Electron. 51, 366–370 (2007). [CrossRef]
  36. W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, “Effect of mask thickness on the nanoscale sidewall roughness and optical scattering losses of deep-etched InP/InGaAsP high mesa waveguides,” J. Vac. Sci. Technol. B 23, 2041–2045 (2005). [CrossRef]
  37. J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003). [CrossRef]
  38. L. Li, T. Abe, and M. Esashi, “Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases,” J. Vac. Sci. Technol. B 21, 2545–2549 (2003). [CrossRef]
  39. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969). [CrossRef]
  40. D. Marcuse, “Radiation losses of dielectric waveguides in terms of the power spectrum of the wall distortion function,” Bell Syst. Tech. J. 48, 3233–3242 (1969). [CrossRef]
  41. D. Marcuse, Light Transmission Optics, Bell Laboratories Series (Van Nostrand Reinhold, 1982).
  42. A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994). [CrossRef]
  43. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004). [CrossRef]
  44. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009). [CrossRef]
  45. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). [CrossRef]
  46. M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19, 1505–1514 (1983). [CrossRef]
  47. C. Ciminelli, F. Dell’Olio, V. Passaro, and M. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41, 285–298 (2009). [CrossRef]
  48. S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005). [CrossRef]
  49. D. Lenz, D. Erni, and W. Bächtold, “Modal power loss coefficients for highly overmoded rectangular dielectric waveguides based on free space modes,” Opt. Express 12, 1150–1156 (2004). [CrossRef]
  50. D. G. Hall, “Scattering of optical guided waves by waveguide surface roughness: a three-dimensional treatment,” Opt. Lett. 6, 601–603 (1981). [CrossRef]
  51. J. M. Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001). [CrossRef]
  52. K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. Schmid, P. Waldron, B. Syrett, and S. Janz, “Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides,” J. Lightwave Technol. 27, 3999–4008 (2009). [CrossRef]
  53. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969). [CrossRef]
  54. H. Kogelnik and H. P. Weber, “Rays, stored energy, and power flow in dielectric waveguides,” J. Opt. Soc. Am. 64, 174–185 (1974). [CrossRef]
  55. F. Ladouceur and L. Poladian, “Surface roughness and backscattering,” Opt. Lett. 21, 1833–1835 (1996). [CrossRef]
  56. P. Verly, R. Tremblay, and J. W. Y. Lit, “Application of the effective-index method to the study of distributed feedback in corrugated waveguides: TM polarization,” J. Opt. Soc. Am. 70, 1218–1221 (1980). [CrossRef]
  57. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993). [CrossRef]
  58. A. Canciamilla, F. Morichetti, A. Artuso, and A. Melloni, “Modelling backscattering in optical waveguides,” in 18th International Workshop on Optical Waveguide Theory and Numerical Modelling (2010).
  59. D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, “Validation of the building-block-based approach for the design of photonic integrated circuits,” J. Lightwave Technol. 30, 3610–3616 (2012). [CrossRef]
  60. E. Kleijn, P. J. Williams, N. D. Whitbread, M. J. Wale, M. K. Smit, and X. J. Leijtens, “Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation,” Opt. Express 20, 22660–22668 (2012). [CrossRef]
  61. W. Sorin and D. Baney, “Measurement of Rayleigh backscattering at 1.55  μm with 32  μm spatial resolution,” IEEE Photon. Technol. Lett. 4, 374–376 (1992). [CrossRef]
  62. F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007). [CrossRef]
  63. A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34, 421–437 (2009). [CrossRef]
  64. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13, 2487–2502 (2005). [CrossRef]
  65. M. Patterson and S. Hughes, Optical Properties of Photonic Structures: Interplay of Order and Disorder (CRC Press, 2012).
  66. W. Bogaerts, P. Bienstman, and R. Baets, “Scattering at sidewall roughness in photonic crystal slabs,” Opt. Lett. 28, 689–691 (2003). [CrossRef]
  67. M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004). [CrossRef]
  68. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004). [CrossRef]
  69. L. C. Andreani and D. Gerace, “Light matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007). [CrossRef]
  70. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007). [CrossRef]
  71. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009). [CrossRef]
  72. V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011). [CrossRef]
  73. V. Savona, “Erratum: electromagnetic modes of a disordered photonic crystal [Phys. Rev. B 83, 085301 (2011)],” Phys. Rev. B 86, 079907 (2012). [CrossRef]
  74. M. Minkov and V. Savona, “Effect of hole-shape irregularities on photonic crystal waveguides,” Opt. Lett. 37, 3108–3110 (2012). [CrossRef]
  75. T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003). [CrossRef]
  76. K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414–4416 (2003). [CrossRef]
  77. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995). [CrossRef]
  78. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005). [CrossRef]
  79. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005). [CrossRef]
  80. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009). [CrossRef]
  81. M. Patterson and S. Hughes, “Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides,” J. Opt. 12, 104013 (2010). [CrossRef]
  82. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  83. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  84. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  85. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  86. D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004). [CrossRef]
  87. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006). [CrossRef]
  88. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007). [CrossRef]
  89. F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010). [CrossRef]
  90. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007). [CrossRef]
  91. A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008). [CrossRef]
  92. C. Canavesi, F. Morichetti, A. Canciamilla, F. Persia, and A. Melloni, “Polarization- and phase-sensitive low-coherence interferometry setup for the characterization of integrated optical components,” J. Lightwave Technol. 27, 3062–3074 (2009). [CrossRef]
  93. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008). [CrossRef]
  94. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007). [CrossRef]
  95. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006). [CrossRef]
  96. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002). [CrossRef]
  97. P. Pottier, M. Gnan, and R. M. D. L. Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007). [CrossRef]
  98. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007). [CrossRef]
  99. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]
  100. A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011). [CrossRef]
  101. J. Li, L. O’Faolain, S. Schulz, and T. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012). [CrossRef]
  102. M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009). [CrossRef]
  103. A. Petrov, M. Krause, and M. Eich, “Backscattering and disorder limits in slow light photonic crystal waveguides,” Opt. Express 17, 8676–8684 (2009). [CrossRef]
  104. F. Wang, J. S. Jensen, J. Mørk, and O. Sigmund, “Systematic design of loss-engineered slow-light waveguides,” J. Opt. Soc. Am. A 29, 2657–2666 (2012). [CrossRef]
  105. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008). [CrossRef]
  106. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010). [CrossRef]
  107. A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE/OUP Series on Electromagnetic Wave Theory (Academic, 1978).
  108. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, 1995).
  109. N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009). [CrossRef]
  110. L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327–370 (1996). [CrossRef]
  111. M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985). [CrossRef]
  112. P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985). [CrossRef]
  113. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]
  114. B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992). [CrossRef]
  115. S. Mazoyer, A. Baron, J.-P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disordered photonic-crystal waveguides,” Appl. Opt. 50, G113–G117 (2011). [CrossRef]
  116. A. Baron, S. Mazoyer, W. Smigaj, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011). [CrossRef]
  117. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007). [CrossRef]
  118. S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007). [CrossRef]
  119. M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008). [CrossRef]
  120. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484–491 (2004). [CrossRef]
  121. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005). [CrossRef]
  122. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004). [CrossRef]
  123. M. Schneider and S. Mookherjea, “Modeling transmission time of silicon nanophotonic waveguides,” IEEE Photon. Technol. Lett. 24, 1418–1420 (2012). [CrossRef]
  124. P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” IEEE Trans. Commun. 35, 210–214 (1987). [CrossRef]
  125. P. Gysel and R. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990). [CrossRef]
  126. F. Morichetti, A. Canciamilla, and A. Melloni, “Statistics of backscattering in optical waveguides,” Opt. Lett. 35, 1777–1779 (2010). [CrossRef]
  127. W. Yun-ping and Z. Dian-lin, “Reshaping, path uncertainty, and superluminal traveling,” Phys. Rev. A 52, 2597–2600 (1995). [CrossRef]
  128. Aspic by Filarete, www.aspicdesign.com .
  129. S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010). [CrossRef]
  130. P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B 50, 9644–9647 (1994). [CrossRef]
  131. Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555–1562 (1999). [CrossRef]
  132. P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103 (2010). [CrossRef]
  133. S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011). [CrossRef]
  134. M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, “Measuring the spatial extent of individual localized photonic states,” Phys. Rev. B 86, 155153 (2012). [CrossRef]
  135. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004). [CrossRef]
  136. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005). [CrossRef]
  137. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008). [CrossRef]
  138. G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008). [CrossRef]
  139. J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006). [CrossRef]
  140. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002). [CrossRef]
  141. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005). [CrossRef]
  142. B. E. Little, J.-P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997). [CrossRef]
  143. B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996). [CrossRef]
  144. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000). [CrossRef]
  145. J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006). [CrossRef]
  146. G. C. Ballesteros, J. Matres, J. Martí, and C. J. Oton, “Characterizing and modeling backscattering in silicon microring resonators,” Opt. Express 19, 24980–24985 (2011). [CrossRef]
  147. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010). [CrossRef]
  148. A. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29, 3693–3704 (2011). [CrossRef]
  149. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  150. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012). [CrossRef]
  151. J. Goeckeritz and S. Blair, “Optical characterization of coupled resonator slow-light rib waveguides,” Opt. Express 18, 18190–18199 (2010). [CrossRef]
  152. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007). [CrossRef]
  153. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010). [CrossRef]
  154. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007). [CrossRef]
  155. S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008). [CrossRef]
  156. T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002). [CrossRef]
  157. A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003). [CrossRef]
  158. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002). [CrossRef]
  159. S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32, 289–291 (2007). [CrossRef]
  160. C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled-resonator optical waveguides,” J. Opt. Soc. Am. B 26, 858–866 (2009). [CrossRef]
  161. H.-Y. Ryu, J.-K. Hwang, and Y.-H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B 59, 5463–5469 (1999). [CrossRef]
  162. A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt. 16, 1971–1974 (1977). [CrossRef]
  163. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18, 26505–26516 (2010). [CrossRef]
  164. A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010). [CrossRef]
  165. S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett. 11, 688–690 (1999). [CrossRef]
  166. D. K. Sparacin, C.-Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30, 2251–2253 (2005). [CrossRef]
  167. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16, 3738–3743 (2008). [CrossRef]
  168. A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36, 4002–4004 (2011). [CrossRef]
  169. Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011). [CrossRef]
  170. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012). [CrossRef]
  171. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37, 3114–3116 (2012). [CrossRef]
  172. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21, 14139–14145 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited