OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Govind Agrawal
  • Vol. 6, Iss. 2 — Jun. 30, 2014

The circular Bragg phenomenon

Muhammad Faryad and Akhlesh Lakhtakia  »View Author Affiliations


Advances in Optics and Photonics, Vol. 6, Issue 2, pp. 225-292 (2014)
http://dx.doi.org/10.1364/AOP.6.000225


View Full Text Article

Enhanced HTML    Acrobat PDF (3788 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Exhibited by structurally chiral materials—such as Reusch piles, cholesteric liquid crystals (CLCs), and chiral sculptured thin films (STFs)—due to their helical nonhomogeneity along a fixed axis, the circular Bragg phenomenon is the almost total reflection of the incident light of the co-handed circular-polarization state but very little reflection of the incident light of the cross-handed circular-polarization state. Manifesting itself in spectral regimes that depend on the angle of incidence, the structural period, and the relative permittivity dyadic, the phenomenon amounts to the formation of a light pipe that bleeds energy backward under appropriate conditions. Mild dissipation and dispersion do not significantly affect the circular Bragg regime. Every structurally chiral material of sufficient thickness is essentially a circular-polarization-sensitive band-rejection filter. Cascades of these materials with or without structural defects can be used to satisfy complex filtering requirements, such as multiband, narrowband, and ultra-narrowband filtering. A shift in the circular Bragg regime due to infiltration of a chiral STF by a fluid enables optical sensing. Sources of circularly polarized light can be fabricated by embedding emission sources in CLCs and chiral STFs.

© 2014 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(160.3710) Materials : Liquid crystals
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Optical Devices

History
Original Manuscript: January 2, 2014
Revised Manuscript: April 15, 2014
Manuscript Accepted: April 16, 2014
Published: June 5, 2014

Virtual Issues
(2014) Advances in Optics and Photonics

Citation
Muhammad Faryad and Akhlesh Lakhtakia, "The circular Bragg phenomenon," Adv. Opt. Photon. 6, 225-292 (2014)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-6-2-225


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Bragg, “The diffraction of X-rays by crystals,” Nobel Lecture (September 6, 1922), http://www.nobelprize.org/nobel_prizes/physics/laureates/1915/wl-bragg-lecture.html (accessed June 25, 2013).
  2. P. P. Ewald, “Zur Begründung der Kristalloptik. Teil II: Theorie der Reflexion und Brechung,” Ann. Phys. 49, 117–143 (1916). See Ewald [3] for an English translation by L. M. Hollingsworth and postscript comments by Ewald. [CrossRef]
  3. P. P. Ewald, On the Foundations of Crystal Optics, Document No.  (Air Force Cambridge Research Laboratories, 1970).
  4. A. Lakhtakia and V. C. Venugopal, “On Bragg reflection by helicoidal bianisotropic mediums,” Int. J. Electron. Commun. (AEÜ) 53, 287–290 (1999).
  5. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008). [CrossRef]
  6. N. Dushkina and A. Lakhtakia, “Structural colors,” in Engineered Biomimicry, A. Lakhtakia and R. J. Martín-Palma, eds. (Elsevier, 2013), pp. 267–303.
  7. A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996). [CrossRef]
  8. J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994). [CrossRef]
  9. S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10, 413–427 (1974). [CrossRef]
  10. E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007). [CrossRef]
  11. A. Othonos, X. Lee, and D. P. Tsai, “Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser,” Opt. Eng. 35, 1088–1092 (1996). [CrossRef]
  12. R. F. Lyon, “Prism-based color separation for professional digital photography,” in Proceedings PICS 2000: Image Processing, Image Quality, Image Capture Systems Conference (Society for Imaging Science and Technology, 2000), pp. 50–54.
  13. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
  14. P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
  15. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978). [CrossRef]
  16. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  17. X.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997). [CrossRef]
  18. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 76, 3269–3284 (2004). [CrossRef]
  19. P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006). [CrossRef]
  20. I. J. Hodgkinson and Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
  21. I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999). [CrossRef]
  22. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
  23. T. G. Mackay and A. Lakhtakia, “Negatively refracting chiral metamaterials: a review,” SPIE Rev. 1, 018003 (2010).
  24. S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University, 1992).
  25. P. G. de Gennes and J. A. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  26. E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. Lpz. 138, 628–638 (1869).
  27. T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012). [CrossRef]
  28. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959). [CrossRef]
  29. J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R. Soc. Lond. 63, 146–152 (1898). [CrossRef]
  30. E. Charney, The Molecular Basis of Optical Activity (Krieger, 1985).
  31. J. Bailey, “Astronomical sources of circularly polarized light and the origin of homochirality,” Orig. Life Evol. Biosph. 31, 167–183 (2001). [CrossRef]
  32. S. Clark, “Polarized starlight and the handedness of life,” Am. Sci. 87(4), 336–383 (1999). [CrossRef]
  33. G. Balavoine, A. Moradpour, and H. B. Kagan, “Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity,” J. Am. Chem. Soc. 96, 5152–5158 (1974). [CrossRef]
  34. O. Buchardt, “Photochemistry with circularly polarized light,” Angew. Chem. Int. Ed. Engl. 13, 179–185 (1974). [CrossRef]
  35. H. Rubalcava and D. J. Fitzmaurice, “Photochemistry with circularly polarized light: a new method,” J. Chem. Phys. 92, 5975–5987 (1990). [CrossRef]
  36. A. Lakhtakia, “The editor’s apology,” in Selected Papers on Natural Optical Activity, A. Lakhtakia, ed. (SPIE, 1990), pp. xiii–xxiv.
  37. B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. 105, 505–511 (2010). [CrossRef]
  38. G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013). [CrossRef]
  39. A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal,” Biol. Rev. 44, 531–562 (1969). [CrossRef]
  40. L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005). [CrossRef]
  41. T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008). [CrossRef]
  42. B. H. Billings, ed., Selected Papers on Applications of Polarized Light (SPIE, 1992).
  43. K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003). [CrossRef]
  44. K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005). [CrossRef]
  45. G. D. Gillen, M. A. Walker, and L. D. Van Woerkom, “Enhanced double ionization with circularly polarized light,” Phys. Rev. A 64, 043413 (2001). [CrossRef]
  46. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007). [CrossRef]
  47. B. Zhang, D. Li, F. Dai, and H. S. Kwok, “Minimization of color fringing effect using a circularly polarized light,” J. Disp. Technol. 8, 269–272 (2012). [CrossRef]
  48. J. Konrad and M. Halle, “3-D displays and signal processing: an answer to 3-D ills?” IEEE Signal Process. Mag. 24(6), 97–111 (2007). [CrossRef]
  49. P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays,” Proc. SPIE 7524, 75240R (2010). [CrossRef]
  50. https://commons.wikimedia.org/wiki/File:REALD.JPG (accessed June27, 2013).
  51. H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-Free Approach (McGraw–Hill, 1983).
  52. M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik 113, 367–371 (2002). [CrossRef]
  53. A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach, 2001).
  54. T. G. Mackay and A. Lakhtakia, “Electromagnetic fields in linear bianisotropic mediums,” Prog. Opt. 51, 121–209 (2008). [CrossRef]
  55. T. G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (World Scientific, 2010).
  56. J. I. Gersten and F. W. Smith, The Physics and Chemistry of Materials (Wiley, 2001).
  57. V. C. Venugopal and A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 454, 1535–1571 (1998). [CrossRef]
  58. V. C. Venugopal and A. Lakhtakia, “Correction for: Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 455, 4383 (1999). [CrossRef]
  59. R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990). [CrossRef]
  60. A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 453, 93–105 (1997). [CrossRef]
  61. A. Lakhtakia and W. S. Weiglhofer, “Corrections for: Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 454, 3275 (1998).
  62. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  63. I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals. Results of an exact calculation using the 4 × 4 characteristic matrix method,” J. Phys. (Paris) 46, 815–825 (1985). [CrossRef]
  64. M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563–1575 (2001). [CrossRef]
  65. J. A. Polo and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums,” Opt. Commun. 230, 369–386 (2004). [CrossRef]
  66. E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).
  67. R. Nityananda, “On the theory of light propagation in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 315–331 (1973). [CrossRef]
  68. R. Nityananda and U. D. Kini, “The theory of reflexion and transmission by plane parallel cholesteric films,” Pramāṇa Suppl. 1, 311–323 (1975).
  69. O. Parodi, “Light propagation along the helical axis in chiral smectics C,” J. Phys. (Paris) Colloq. 36, C1-325–C1-326 (1975). [CrossRef]
  70. I. Abdulhalim, “Light propagation along the helix of chiral smectics and twisted nematics,” Opt. Commun. 64, 443–448 (1987). [CrossRef]
  71. A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 448, 419–437 (1995). [CrossRef]
  72. A. Lakhtakia and W. S. Weiglhofer, “Corrections on: On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 454, 3275 (1998).
  73. R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8, 1616–1623 (1973). [CrossRef]
  74. L. Oldano, P. Allia, and L. Trossi, “Optical properties of anisotropic periodic helical structures,” J. Phys. (Paris) 46, 573–582 (1985). [CrossRef]
  75. K. Rokushima and J. Yamakita, “Analysis of diffraction in periodic liquid crystals: the optics of the chiral smectic C phase,” J. Opt. Soc. Am. A 4, 27–33 (1987). [CrossRef]
  76. T. H. Sterling and C. F. Hayes, “Optical rotatory power of a cholesteric liquid crystal for obliquely incident light using multiple scattering,” Mol. Cryst. Liq. Cryst. 43, 279–286 (1977). [CrossRef]
  77. R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan, “Optics of a chiral liquid crystal far from a Bragg resonance,” Sov. Phys. JETP 56, 1024–1027 (1982).
  78. W. S. Weiglhofer and A. Lakhtakia, “Oblique propagation in a cholesteric liquid crystal: 4 × 4 matrix perturbational solution,” Optik 102, 111–114 (1995).
  79. W. H. Southwell, “Spectral response calculations of rugate filters using coupled-wave theory,” J. Opt. Soc. Am. A 5, 1558–1564 (1988). [CrossRef]
  80. W. H. Southwell and R. L. Hall, “Rugate filter sidelobes suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949–2951 (1989). [CrossRef]
  81. B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt. 29, 24–30 (1990). [CrossRef]
  82. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, and N. S. Gluck, “Codeposition of continuous composition rugate filters,” Appl. Opt. 28, 2945–2948 (1989). [CrossRef]
  83. P. L. Swart, P. V. Bulkin, and B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997). [CrossRef]
  84. F. Reinitzer, “Beiträge zur Kenntiss des Cholesterins,” Monat. Chem. (Wien) 9, 421–441 (1888). See Sluckin et al. [85] for an English translation.
  85. T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, Crystals That Flow: Classic Papers From the History of Liquid Crystals (Taylor & Francis, 2004).
  86. G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch I. Les vibrations propres d’une pile de deux lames a biréfringence rectiligne ne sont pas orthogonales,” J. Opt. (Paris) 12, 323–329 (1981). [CrossRef]
  87. G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch II. Piles éclairées sous l’incidence normale par des ondes monochromatiques planes et uniformes,” J. Opt. (Paris) 13, 227–238 (1982). [CrossRef]
  88. G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch III. Biréfringence elliptique des vibrations itératives; activité optique de piles hélicoïdales d’extension finie,” J. Opt. (Paris) 16, 203–213 (1985). [CrossRef]
  89. G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch IV. Domaines multiples de réflexion sélective,” J. Opt. (Paris) 17, 211–221 (1986). [CrossRef]
  90. I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004). [CrossRef]
  91. A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005). [CrossRef]
  92. A. Lakhtakia, “Electrically switchable exhibition of circular Bragg phenomenon by an isotropic slab,” Microw. Opt. Technol. Lett. 48, 2148–2153 (2006). [CrossRef]
  93. A. Lakhtakia, “Ambichiral, electro-optic, circular-polarization rejection filters: theory,” Phys. Lett. A 354, 330–334 (2006). [CrossRef]
  94. M. Dixit and A. Lakhtakia, “Electrically controlled Bragg resonances of an ambichiral electro-optic structure: oblique incidence,” Asian J. Phys. 17, 213–223 (2008).
  95. M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun. 281, 4812–4823 (2008). [CrossRef]
  96. J. L. Fergason, “Liquid crystals,” Sci. Am. 211(2), 76–85 (1964). [CrossRef]
  97. W. J. Haas, “Liquid crystal display research: the first fifteen years,” Mol. Cryst. Liq. Cryst. 94, 1–31 (1983). [CrossRef]
  98. G. R. Luckhurst, “Biaxial nematic liquid crystals: fact or fiction?” Thin Solid Films 393, 40–52 (2001). [CrossRef]
  99. T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006). [CrossRef]
  100. S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disc-like molecules,” Pramāṇa 9, 471–480 (1977). [CrossRef]
  101. S. Chandrasekhar and G. S. Ranganath, “Discotic liquid crystals,” Rep. Prog. Phys. 53, 57–84 (1990). [CrossRef]
  102. G. Pelzl, S. Diele, and W. Weissflog, “Banana-shaped compounds—a new field of liquid crystals,” Adv. Mater. 11, 707–724 (1999). [CrossRef]
  103. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970). [CrossRef]
  104. A. Lakhtakia and W. S. Weiglhofer, “Simple and exact analytic solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 12, 245–248 (1996). [CrossRef]
  105. J. A. Polo and A. Lakhtakia, “Numerical implementation of exact analytical solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 35, 397–400 (2002). [CrossRef]
  106. H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983). [CrossRef]
  107. H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983). [CrossRef]
  108. V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Proc. R. Soc. A 456, 125–161 (2000). [CrossRef]
  109. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerret, “Liquid-crystal laser optics: design, fabrication, and performance,” J. Opt. Soc. Am. B 5, 1962–1979 (1988). [CrossRef]
  110. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995). [CrossRef]
  111. Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H. Y. Park, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999). [CrossRef]
  112. V. A. Belyakov and V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys. 112, 694–710 (2011). [CrossRef]
  113. A. H. Gevorgyan and M. Z. Harutyunyan, “Chiral photonic crystals with an anisotropic defect layer,” Phys. Rev. E 76, 031701 (2007). [CrossRef]
  114. A. H. Gevorgyan, “Chiral photonic crystals with an anisotropic defect layer: oblique incidence,” Opt. Commun. 281, 5097–5103 (2008). [CrossRef]
  115. V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002). [CrossRef]
  116. F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. A 461, 2985–3004 (2005). [CrossRef]
  117. T. Matsui, T. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Phys. Rev. E 69, 061715 (2004). [CrossRef]
  118. J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003). [CrossRef]
  119. K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995). [CrossRef]
  120. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996). [CrossRef]
  121. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004). [CrossRef]
  122. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007). [CrossRef]
  123. R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008). [CrossRef]
  124. V. C. Venugopal and A. Lakhtakia, “On absorption by non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 10, 173–184 (2000). [CrossRef]
  125. A. Lakhtakia, “Spectral signatures of axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 8, 129–137 (1999). [CrossRef]
  126. A. Lakhtakia, “Bragg-regime absorption in axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Microw. Opt. Technol. Lett. 22, 243–247 (1999). [CrossRef]
  127. V. C. Venugopal and A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic dielectric mediums (TFHBMs),” Int. J. Appl. Electromag. Mech. 9, 201–210 (1998).
  128. M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances,” J. Mod. Opt. 47, 973–991 (2000). [CrossRef]
  129. M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances: erratum,” J. Mod. Opt. 50, 2807 (2003). [CrossRef]
  130. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000). [CrossRef]
  131. I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000). [CrossRef]
  132. P. C. P. Hrudey, K. L. Westra, and M. J. Brett, “Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition,” Adv. Mater. 18, 224–228 (2006). [CrossRef]
  133. B. Szeto, P. C. P. Hrudey, M. Taschuk, and M. J. Brett, “Circularly polarized luminescence from chiral thin films,” Proc. SPIE 6135, 613511 (2008). [CrossRef]
  134. I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998). [CrossRef]
  135. J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. (Amsterdam) 29, 318–325 (2006). [CrossRef]
  136. A. Lakhtakia, “Pseudo-isotropic and maximum-bandwidth points for axially excited chiral sculptured thin films,” Microw. Opt. Technol. Lett. 34, 367–371 (2002). [CrossRef]
  137. A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010). [CrossRef]
  138. V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–187 (1998). [CrossRef]
  139. V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium: erratum,” Opt. Commun. 161, 370 (1999). [CrossRef]
  140. G. Borrmann, “Über Extinktionsdiagramme von Quarz,” Phys. Z. 42, 157–162 (1941).
  141. P. P. Ewald, “Crystal optics for visible light and x rays,” Rev. Mod. Phys. 37, 46–56 (1965). [CrossRef]
  142. R. Nityananda, U. D. Kini, S. Chandrasekhar, and K. A. Suresh, “Anomalous transmission (Borrmann effect) in absorbing cholesteric liquid crystals,” Pramāṇa Suppl. 1, 325–340 (1975).
  143. C. F. Bohren and D. F. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  144. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  145. J. Wang, A. Lakhtakia, and J. B. Geddes, “Multiple Bragg regimes exhibited by a chiral sculptured thin film half-space on axial excitation,” Optik 113, 213–221 (2002). [CrossRef]
  146. A. Lakhtakia, “Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 56, 169–176 (2002). [CrossRef]
  147. A. Lakhtakia, “Erratum to: Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 57, 79 (2003). [CrossRef]
  148. S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. A 25, 2611–2615 (2007). [CrossRef]
  149. A. Esfandiar, H. Savaloni, and F. Placido, “On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films,” Physica E 50, 88–96 (2013). [CrossRef]
  150. M. Suzuki, “Practical applications of thin films nanostructured by shadowing growth,” J. Nanophoton. 7, 073598 (2013). [CrossRef]
  151. S. E. Swiontek, D. P. Pulsifer, J. Xu, and A. Lakhtakia, “Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition,” J. Nanophoton. 7, 073599 (2013). [CrossRef]
  152. A. Lakhtakia and V. C. Venugopal, “Dielectric thin-film helicoidal bianistropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microw. Opt. Technol. Lett. 17, 135–140 (1998). [CrossRef]
  153. A. Lakhtakia and I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999). [CrossRef]
  154. J. A. Polo and A. Lakhtakia, “Tilt-modulated chiral sculptured thin films: an alternative to quarter-wave stacks,” Opt. Commun. 242, 13–21 (2004). [CrossRef]
  155. F. Wang, A. Lakhtakia, and R. Messier, “Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 20, 91–103 (2002). [CrossRef]
  156. F. Wang, A. Lakhtakia, and R. Messier, “Erratum: Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 24, 91 (2003). [CrossRef]
  157. F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004). [CrossRef]
  158. R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000). [CrossRef]
  159. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  160. N. Chateau and J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994). [CrossRef]
  161. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  162. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).
  163. K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18, 3111–3118 (2008). [CrossRef]
  164. F. Babaei, A. Esfandiar, and H. Savaloni, “Optical spectra of graded nanostructured TiO2 chiral sculptured thin films,” Opt. Commun. 283, 2849–2856 (2010). [CrossRef]
  165. H. Savaloni and A. Esfandiar, “Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films,” Appl. Surf. Sci. 257, 9425–9434 (2011). [CrossRef]
  166. J. B. Geddes, M. W. Meredith, and A. Lakhtakia, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 182, 45–57 (2000). [CrossRef]
  167. M. W. Meredith and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part I: narrow-extent pulses,” Optik 111, 443–453 (2000).
  168. J. B. Geddes and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part II: Rectangular wide-extent pulses,” Optik 112, 62–66 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html . [CrossRef]
  169. J. B. Geddes and A. Lakhtakia, “Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 13, 3–14 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html . [CrossRef]
  170. J. B. Geddes and A. Lakhtakia, “Erratum: Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).
  171. J. B. Geddes and A. Lakhtakia, “Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 14, 97–105 (2001). [CrossRef]
  172. J. B. Geddes and A. Lakhtakia, “Erratum: Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).
  173. J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006). [CrossRef]
  174. J. B. Geddes and A. Lakhtakia, “Pulse-coded information transmission across an axially excited chiral-sculptured thin film in the Bragg regime,” Microw. Opt. Technol. Lett. 28, 59–62 (2001). [CrossRef]
  175. J. B. Geddes and A. Lakhtakia, “Swamping of circular Bragg phenomenon and shaping of videopulses,” Microw. Opt. Technol. Lett. 49, 776–779 (2007). [CrossRef]
  176. J. B. Geddes and A. Lakhtakia, “Videopulse bleeding in axially excited chiral sculptured thin films in the Bragg regime,” Eur. Phys. J. Appl. Phys. 17, 21–24 (2002). [CrossRef]
  177. A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Marcel Dekker, 2003), Vol. 1, pp. 230–236.
  178. F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008). [CrossRef]
  179. Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012). [CrossRef]
  180. J. Adams, W. Haas, and J. Daily, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096–4098 (1971). [CrossRef]
  181. N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008). [CrossRef]
  182. Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16, 5186–5192 (2008). [CrossRef]
  183. A. Lakhtakia, “Stepwise chirping of chiral sculptured thin films for Bragg bandwidth enhancement,” Microw. Opt. Technol. Lett. 28, 323–326 (2001). [CrossRef]
  184. F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films,” Microw. Opt. Technol. Lett. 42, 135–138 (2004). [CrossRef]
  185. Y. Huang, Y. Zhou, and S.-T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Express 15, 6414–6419 (2007). [CrossRef]
  186. H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976). [CrossRef]
  187. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994). [CrossRef]
  188. A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999). [CrossRef]
  189. I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Commun. 177, 79–84 (2000). [CrossRef]
  190. F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper. [CrossRef]
  191. A. Lakhtakia, V. C. Venugopal, and M. W. McCall, “Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters,” Opt. Commun. 177, 57–68 (2000). [CrossRef]
  192. A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283–287 (2007). [CrossRef]
  193. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000). [CrossRef]
  194. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001). [CrossRef]
  195. F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003). [CrossRef]
  196. L. D. Woolf, “Multiple smatterings of insight: 10 years of interaction with Craig Bohren,” J. Nanophoton. 4, 041595 (2010). [CrossRef]
  197. F. Wang and A. Lakhtakia, “Defect modes in multisection helical photonic crystals,” Opt. Express 13, 7319–7335 (2005). [CrossRef]
  198. I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003). [CrossRef]
  199. F. Wang and A. Lakhtakia, “Third method for generation of spectral holes in chiral sculptured thin films,” Opt. Commun. 250, 105–110 (2005). [CrossRef]
  200. M. McCall and A. Lakhtakia, “Polarization-dependent narrowband spectral filtering by chiral sculptured thin films,” J. Mod. Opt. 47, 743–755 (2000).
  201. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999). [CrossRef]
  202. T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V.-P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17, 5446–5456 (2009). [CrossRef]
  203. A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B Chem. 52, 243–250 (1998). [CrossRef]
  204. A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001). [CrossRef]
  205. A. Lakhtakia, “Correction to: Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 544 (2001). [CrossRef]
  206. T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010). [CrossRef]
  207. T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010). [CrossRef]
  208. Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011). [CrossRef]
  209. J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” Adv. Mater. 12, 371–373 (2000). [CrossRef]
  210. S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of chiral thin films and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001). [CrossRef]
  211. S. Odenbach, “Recent progress in magnetic fluid research,” J. Phys. Condens. Matter 16, R1135–R1150 (2004). [CrossRef]
  212. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystal,” Opt. Lett. 23, 1707–1709 (1998). [CrossRef]
  213. K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002). [CrossRef]
  214. J. Schmidtke and W. Stille, “Fluourescence of a dye-doped cholesteric liquid crystal film in the region of stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003). [CrossRef]
  215. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003). [CrossRef]
  216. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004). [CrossRef]
  217. A. Lakhtakia and J. Xu, “Planewave remittances of an axially excited chiral sculptured thin film with gain,” Optik 118, 94–99 (2007). [CrossRef]
  218. F. Wang, A. Lakhtakia, and R. Messier, “Towards piezoelectrically tunable sculptured thin film lasers,” Sens. Actuators A Phys. 102, 31–35 (2002). [CrossRef]
  219. A. Lakhtakia, “On bioluminescent emission from chiral sculptured thin films,” Opt. Commun. 188, 313–320 (2001). [CrossRef]
  220. X.-H. Xu and A. J. Bard, “Immobilization and hybridization of DNA on an aluminum(III) alkanebisphophonate thin film with electrogenerated chemiluminescent detection,” J. Am. Chem. Soc. 117, 2627–2631 (1995). [CrossRef]
  221. E. E. Steltz and A. Lakhtakia, “Theory of second-harmonic-generated radiation from chiral sculptured thin films for bio-sensing,” Opt. Commun. 216, 139–150 (2003). [CrossRef]
  222. A. Lakhtakia and W. S. Weiglhofer, “Green function for radiation and propagation in helicoidal bianisotropic mediums,” IEE Proc.-Microw. Antennas Propag. 144, 57–59 (1997). [CrossRef]
  223. T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film,” Opt. Express 15, 14689–14703 (2007). [CrossRef]
  224. T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film: erratum,” Opt. Express 16, 3659 (2008). [CrossRef]
  225. S. S. Jamaian and T. G. Mackay, “On chemiluminescent emission from an infiltrated chiral sculptured thin film,” Opt. Commun. 284, 2382–2392 (2011). [CrossRef]
  226. S. S. Jamaian and T. G. Mackay, “Erratum to ‘On chemiluminescent emission from an infiltrated chiral sculptured thin film’,” Opt. Commun. 284, 3488–3489 (2011). [CrossRef]
  227. A. Lakhtakia, “On radiation from canonical source configurations embedded in structurally chiral materials,” Microw. Opt. Technol. Lett. 37, 37–40 (2003). [CrossRef]
  228. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Pergamon, 1966).
  229. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Appendix III.
  230. F. Wang, “Note on the asymptotic approximation of a double integral with an angular-spectrum representation,” Int. J. Electron. Commun. (AEÜ) 59, 258–261 (2005). [CrossRef]
  231. J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006). [CrossRef]
  232. I. J. Hodgkinson, A. Lakhtakia, and Q. h. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000). [CrossRef]
  233. Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Optical and structural properties of a circular polarization handedness inverter prepared by using glancing angle deposition,” J. Korean Phys. Soc. 55, 1263–1266 (2009). [CrossRef]
  234. J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009). [CrossRef]
  235. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009). [CrossRef]
  236. T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010). [CrossRef]
  237. T. G. Mackay, A. Lakhtakia, and S. S. Jamaian, “Chiral sculptured thin films as integrated dual-modality optical sensors,” Proc. SPIE 8465, 84650X (2012). [CrossRef]
  238. S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013). [CrossRef]
  239. J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011). [CrossRef]
  240. D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov–Tamm wave,” Phys. Rev. Lett. 111, 243902 (2013). [CrossRef]
  241. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009). [CrossRef]
  242. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009). [CrossRef]
  243. A. Lakhtakia, “Polarization-universal rejection filtering by ambichiral structures made of indefinite dielectric-magnetic materials,” Phys. Scr. 77, 055401 (2008). [CrossRef]
  244. A. Lakhtakia, “Exhibition of circular Bragg phenomenon by hyperbolic, dielectric, structurally chiral materials,” J. Nanophoton. 8, 083998 (2014). [CrossRef]
  245. A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 1: Axial dc electric field,” Optik 119, 253–268 (2008). [CrossRef]
  246. A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 2: Arbitrary dc electric field,” Optik 119, 269–275 (2008). [CrossRef]
  247. R. W. Boyd, Nonlinear Optics (Academic, 1992), Chap. 10.
  248. F. Brochard and P. G. de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31, 691–708 (1970). [CrossRef]
  249. W. S. Weiglhofer and A. Lakhtakia, “Electromagnetic wave propagation in super-cholesteric materials parallel to the helical axis,” J. Phys. D 26, 2117–2122 (1993). [CrossRef]
  250. R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011). [CrossRef]
  251. L. P. Gevorkyan, V. A. Makarov, and E. B. Cherepetskaya, “Compression of laser pulses during dynamic scattering in a nonlinear cholesteric liquid crystal,” Sov. J. Quantum Electron. 19, 1604–1605 (1989). [CrossRef]
  252. I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited