OSA's Digital Library

Advances in Optics and Photonics

Advances in Optics and Photonics

| BRINGING REVIEWS AND TUTORIALS TO LIGHT

  • Editor: Bahaa E. A. Saleh
  • Vol. 3, Iss. 2 — Jun. 30, 2011

Nonlinear optics, chirality, magneto-optics: a serendipitous road [Invited]

Andre Persoons  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 1, pp. 5-16 (2011)
http://dx.doi.org/10.1364/OME.1.000005


View Full Text Article

Enhanced HTML    Acrobat PDF (1957 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reviews the work of my group over the last 20 years on the role of chirality in second-order nonlinear optics of molecular systems and new developments linking my research to magneto-optics and organic magnetism.

© 2011 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(160.1585) Materials : Chiral media

ToC Category:
Chiral Optical Materials

History
Original Manuscript: February 23, 2011
Revised Manuscript: March 3, 2011
Manuscript Accepted: March 3, 2011
Published: April 22, 2011

Virtual Issues
Chiral Optical Materials (2011) Optical Materials Express
(2011) Advances in Optics and Photonics

Citation
Andre Persoons, "Nonlinear optics, chirality, magneto-optics:
a serendipitous road [Invited]," Opt. Mater. Express 1, 5-16 (2011)
http://www.opticsinfobase.org/aop/abstract.cfm?URI=ome-1-1-5


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Fukuyama, The End of History and the Last Man (The Free Press, 1992).
  2. M. Kauranen, T. Verbiest, and A. Persoons, “Chiral materials in second-order nonlinear optics,” J. Nonlinear Opt. Phys. Mater. 8(2), 171–189 (1999). [CrossRef]
  3. S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mater. Sci. Eng. R42, 115–155 (2003).
  4. All serious students of nonlinear optics should have copies of the following books, in order of mathematical depth first editions given, but see subsequent editions also: G. C. Baldwin, An Introduction to Nonlinear Optics (Plenum Press, 1969); T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques (CRC Press, 2009); P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991); D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, 1987); R. W. Boyd, Nonlinear Optics (Academic Press, 1992); A. Yariv, Quantum Electronics (Wiley and Sons, 1967); Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984); N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1965).
  5. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961). [CrossRef]
  6. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960). [CrossRef]
  7. A. Persoons and L. Hellemans, “New electric field methods in chemical relaxation spectrometry,” Biophys. J. 24(1), 119–134 (1978). [CrossRef] [PubMed]
  8. A. D. Buckingham, “Theory of the dielectric constant at high field strengths,” J. Chem. Phys. 25(3), 428–434 (1956). [CrossRef]
  9. M. G. Kuzyk and C. W. Dirk, eds., Characterisation Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, 1998).
  10. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic-generation in poled polymer films,” Appl. Phys. Lett. 49(5), 248–250 (1986). [CrossRef]
  11. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second order linear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987). [CrossRef]
  12. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94(1), 31–75 (1994). [CrossRef]
  13. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. Jen, “From molecules to opto-chips: organic electro-optic materials,” J. Mater. Chem. 9(9), 1905–1920 (1999). [CrossRef]
  14. S. R. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature 388(6645), 845–851 (1997). [CrossRef]
  15. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 1982).
  16. A. Lakhtakia, Selected Papers on Natural Optical Activity (SPIE, 1990).
  17. J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138(6A), A1599–A1606 (1965). [CrossRef]
  18. P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966). [CrossRef]
  19. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993). [CrossRef]
  20. T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116(20), 9203–9205 (1994). [CrossRef]
  21. M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. (Deerfield Beach Fla.) 7(7), 641–644 (1995). [CrossRef]
  22. M. Kauranen, J. J. Maki, T. Verbiest, S. Van Elshocht, and A. Persoons, “Quantitative determination of electric and magnetic second-order susceptibility tensors of chiral surfaces,” Phys. Rev. B 55(4), R1985–R1988 (1997). [CrossRef]
  23. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Nonlinear optical properties of chiral polymers,” Synth. Met. 81(2-3), 117–120 (1996). [CrossRef]
  24. J. J. Maki and A. Persoons, “One-electron second-order optical activity of a helix,” J. Chem. Phys. 104(23), 9340–9348 (1996). [CrossRef]
  25. M. Kauranen, C. Boutton, T. Verbiest, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270(5238), 966–969 (1995). [CrossRef]
  26. S. Van Elshocht, T. Verbiest, M. Kauranen, A. Persoons, B. M. W. Langeveld-Voss, and E. W. Meijer, “Direct evidence of the failure of electric-dipole approximation in second harmonic generation from a chiral polymer film,” J. Chem. Phys. 107(19), 8201–8203 (1997). [CrossRef]
  27. A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 315(1), 93–98 (1998). [CrossRef]
  28. T. Verbiest, S. Sioncke, G. Koeckelberghs, C. Samyn, A. Persoons, E. Botek, J. M. André, and B. Champagne, ““Nonlinear optical properties of spincoated films of chiral polythiophenes,” Chem. Phys. Lett. 404(1-3), 112–115 (2005). [CrossRef]
  29. C. Nuckolls, T. J. Katz, T. Verbiest, S. V. Elshocht, H. G. Kuball, S. Kiesewalter, A. J. Lovinger, and A. Persoons, “Circular dichroism and UV-Visible absorption spectra of the Langmuir-Blodgett films of an aggregating helicene,” J. Am. Chem. Soc. 120(34), 8656–8660 (1998). [CrossRef]
  30. T. Verbiest, S. V. Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. J. Katz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282(5390), 913–915 (1998). [CrossRef] [PubMed]
  31. T. Verbiest, S. Sioncke, A. Persoons, L. Vyklický, and T. J. Katz, “Electric-field-modulated circular-difference effects in second-harmonic generation from a chiral liquid crystal,” Angew. Chem. Int. Ed. Engl. 41(20), 3882–3884 (2002). [CrossRef] [PubMed]
  32. B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84(1), 79–82 (2000). [CrossRef] [PubMed]
  33. D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108(4), 1301–1304 (1998). [CrossRef]
  34. F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: an experimental investigation,” Phys. Rev. A 71(5), 055401 (2005). [CrossRef]
  35. E. S. Barr, “Men and milestones in optics. V: Michael faraday,” Appl. Opt. 6(4), 631–637 (1967). [CrossRef] [PubMed]
  36. M. Mansuripur, “Classical Optics and Its Applications” (Cambridge University Press, 2002), Chap. 10.
  37. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965). [CrossRef]
  38. E. Botek, B. Champagne, T. Verbiest, P. Gangopadhyay, and A. Persoons, “A joint theoretical-experimental investigation of the Faraday effect in benzene, toluene, and p-xylene,” ChemPhysChem 7(8), 1654–1656 (2006). [CrossRef] [PubMed]
  39. P. Gangopadhyay, S. Foerier, G. Koeckelberghs, M. Vangheluwe, A. Persoons, and T. Verbiest, “Efficient Faraday rotation in conjugated polymers,” Proc. SPIE 6331, 63310Z (2006).
  40. G. Koeckelberghs, M. Vangheluwe, K. V. Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: effects on the Faraday Rotation and polymerization mechanism,” Macromol. Rapid Commun. 27(22), 1920–1925 (2006). [CrossRef]
  41. P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112(21), 8032–8037 (2008). [CrossRef]
  42. P. Gangopadhyay, G. Koeckelberghs, and A. Persoons, “Magneto-optic properties of regioregular polyalkylthiophenes,” Chem. Mater. 23(3), 516–521 (2011). [CrossRef]
  43. G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, Ch. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008). [CrossRef]
  44. M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov, H. Lemmetyinen, and M. Kauranen, “Absolute probe of surface chirality based on focused circularly-polarized light,” J. Phys. Chem. Lett. 1(12), 1826–1829 (2010). [CrossRef]
  45. M. Zdanowicz, S. Kujala, H. Husu, and M. Kauranen, “Effective medium multipolar tensor analysis of second-harmonic generation from metal nanoparticles,” N. J. Phys. 13(2), 023025 (2011). [CrossRef]
  46. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005). [CrossRef] [PubMed]
  47. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009). [CrossRef] [PubMed]
  48. V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express 18(8), 8286–8293 (2010). [CrossRef] [PubMed]
  49. V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011). [CrossRef] [PubMed]
  50. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  51. N. Ji, V. Ostroverkhov, M. Belkin, Y. J. Shiu, and Y. R. Shen, “Toward chiral sum-frequency spectroscopy,” J. Am. Chem. Soc. 128(27), 8845–8848 (2006). [CrossRef] [PubMed]
  52. M. A. Belkin and Y. R. Shen, “Nonlinear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24(2), 257–299 (2005). [CrossRef]
  53. F. C. Boman, J. M. Gibbs-Davis, L. M. Heckman, B. R. Stepp, S. T. Nguyen, and F. M. Geiger, “DNA at aqueous/solid interfaces: chirality-based detection via second harmonic generation activity,” J. Am. Chem. Soc. 131(2), 844–848 (2009). [CrossRef] [PubMed]
  54. S. R. Walter and F. M. Geiger, “DNA on stage: showcasing oligonucleotides at surfaces and interfaces with second harmonic and vibrational sum frequency generation,” J. Phys. Chem. Lett. 1(1), 9–15 (2010). [CrossRef]
  55. V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001). [CrossRef]
  56. F. Hache, H. Mesnil, and M.-C. Schanne-Klein, “Application of classical models of chirality to surface second harmonic generation,” J. Chem. Phys. 115(14), 6707–6715 (2001). [CrossRef]
  57. M. C. Schanne-Klein, T. Boulesteix, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Strong chiroptical effects in surface second harmonic generation obtained for molecules exhibiting excitonic coupling chirality,” Chem. Phys. Lett. 362(1-2), 103–108 (2002). [CrossRef]
  58. G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004). [CrossRef] [PubMed]
  59. P. Fischer, A. D. Buckingham, K. Beckwitt, D. S. Wiersma, and F. W. Wise, “New electro-optic effect: sum-frequency generation from optically active liquids in the presence of a dc electric field,” Phys. Rev. Lett. 91(17), 173901 (2003). [CrossRef] [PubMed]
  60. P. Fischer, D. S. Wiersma, R. Righini, B. Champagne, and A. D. Buckingham, “Three-wave mixing in chiral liquids,” Phys. Rev. Lett. 85(20), 4253–4256 (2000). [CrossRef] [PubMed]
  61. J. Hicks, Chirality: Physical Chemistry; ACS Symposium Series 810 (American Chemical Society, 2002).
  62. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009). [CrossRef]
  63. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009). [CrossRef] [PubMed]
  64. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010). [CrossRef] [PubMed]
  65. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited