Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 40,
  • Issue 1,
  • pp. 60-70
  • (1986)

Magnetically Tailored, Atmospheric-Pressure Plasmas for Atomic Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Three magnetic field-plasma configurations are used to study the inter-action of external magnetic fields with analytically useful, atmospheric-pressure plasmas. A magnetic field normal to the electric field in the plasma produced by the capacitive discharge vaporization of a thin Ag film is used to obtain an ExB drift motion of the plasma. Photographs show that this drift motion can drastically alter the size, shape, and location of the plasma. The same plasma-generation technique is combined with a nonuniform magnetic field to obtain an adiabatic magnetic-mirror ion trap. Finally, the cylindrically symmetric plasma produced by the capacitive discharge vaporization of a thin metal wire or a bundle of graphite fibers is combined with an axial magnetic field to obtain a theta pinch of the plasma. In all cases, the plasma current is used to generate the magnetic field in a large air-core inductor surrounding the plasma. Radiative and electrical properties of these magnetically modified plasmas will be presented.

PDF Article
More Like This
Laser-induced breakdown spectroscopy of aluminum plasma in the absence and presence of magnetic field

Naveed Ahmed Chishti, Shazia Bashir, Asadullah Dawood, and Muhammad Asad Khan
Appl. Opt. 58(4) 1110-1120 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.