Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 40,
  • Issue 4,
  • pp. 491-494
  • (1986)

Time-Resolved Laser-Induced Breakdown Spectrometry for the Rapid Determination of Beryllium in Beryllium-Copper Alloys

Not Accessible

Your library or personal account may give you access

Abstract

Time-resolved laser-induced breakdown spectrometry has been combined with the long spark technique and applied to the rapid determination of beryllium in beryllium-copper alloys. A calibration curve was developed which related the beryllium concentration in a solid copper matrix to the Be(I) 234.9-nm to Cu(II) 235.7-nm intensity ratio. The beryllium concentrations ranged from 0.001 to 0.22%. For the lowest concentration the relative standard deviation of replicate samples was 7%, implying a detection limit of 0.0002% (2 ppm) at a signal-to-noise ratio of 3. The excitation temperature was determined from Boltzmann plots on Cu(I) and Cu(II), assuming local thermodynamic equilibrium. The values from the two spectra agreed well, and averaged to 13,850 K at 1 μs into the plasma lifetime.

PDF Article
More Like This
Determination of ablation threshold of copper alloy with orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy

Qi Zhou, Yuqi Chen, Feifei Peng, Xuejiao Yang, and Runhua Li
Appl. Opt. 52(23) 5600-5605 (2013)

Laser-induced breakdown spectroscopy of molten aluminum alloy

Awadhesh K. Rai, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 42(12) 2078-2084 (2003)

Determination of thorium and uranium in solution by laser-induced breakdown spectrometry

Arnab Sarkar, Devanathan Alamelu, and Suresh Kumar Aggarwal
Appl. Opt. 47(31) G58-G64 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved