Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 3,
  • pp. 420-422
  • (1996)

Absorptivity of SiF4 at 1027 cm-1 for High Continuous-Wave Laser Power

Not Accessible

Your library or personal account may give you access

Abstract

Silicon tetrafluoride (SiF<sub>4</sub>) and sulfur hexafluoride (SF<sub>6</sub>) are widely used as sensitizing agents in photochemical experiments in the infrared region of the spectrum. These experiments include chemical vapor deposition, powder formation (for a review see Ref. 1), and kinetics. The energy of the Si-F bond is 610 kJ mol<sup>-1</sup>, whereas that of the corresponding S-F bond is 300 kJ mol<sup>-1</sup>. Therefore, SiF<sub>4</sub> is expected to be a more versatile sensitizing agent than SF<sub>6</sub>, since the relatively high Si-F bond energy allows for greater radiative energy input and higher effective reaction temperatures. The high effective temperatures attained with the use of SiF<sub>4</sub> (or SF<sub>6</sub>) necessitate the study of the absorptivities of these materials, since that quantity is known to be temperature dependent. Unfortunately, although some experimental results have been reported for SF<sub>6</sub>, such data are not generally available for SiF<sub>4</sub>. Moreover, in the case of laser-excited experiments, there is the potential for photochemical bleaching. Again, such data have been obtained for SF<sub>6</sub>, but only a limited amount of information is available for SiF<sub>4</sub>. In this study, we report on the absorptivity as a function of sample pressure (temperature) and as a function the continuous-wave (cw) laser power for conditions typically employed in sensitized infrared-driven chemical processes. It may be readily observed from the presented data that the absorptivity decreases with increasing laser power and that a limiting temperature is reached for increasing sample pressure at a constant laser power.

PDF Article
More Like This
CO2 laser coincidences with ν3 of SiF4 near 9.7 μm

Robin S. McDowell, Chris W. Patterson, Norris G. Nereson, F. R. Petersen, and J. S. Wells
Opt. Lett. 6(9) 422-424 (1981)

High-gain 87 cm−1 Raman line of KYW and its impact on continuous-wave Raman laser operation

Soumya Sarang, Robert J. Williams, Oliver Lux, Ondrej Kitzler, Aaron McKay, Hadiya Jasbeer, and Richard P. Mildren
Opt. Express 24(19) 21463-21473 (2016)

High-power continuous-wave Cr4+:forsterite laser

Anatoliy Ivanov, Vladislav Shcheslavskiy, Vladislav Yakovlev, Boris Minkov, and Alexander Vasiliev
Appl. Opt. 40(33) 6034-6037 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.