Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 52,
  • Issue 7,
  • pp. 913-918
  • (1998)

Preferential Vaporization during Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

The Zn-to-Cu ratio in brass was measured by laser ablation inductively coupled plasma atomic emission spectroscopy. The influence of laser beam properties (pulse width, wavelength, and power density) on fractional laser ablation was investigated. The behavior of the Zn/Cu ratio vs. laser power density shows that there are different mechanisms influencing ps and ns laser ablation. With the use of a 30 ns pulse duration from an excimer laser, thermal vaporization appears to be the dominant process in the low-power density region. The Zn/Cu ratio approaches stoichiometry at higher power density, but the ablated mass still remains Zn rich. With a 35 ps pulse Nd:YAG laser, a nonthermal mechanism appears to govern the laser ablation process. When a 3 ns Nd:YAG laser is used, both thermal and nonthermal processes exist. For both 3 ns and 30 ps Nd:YAG lasers, stoichiometric ablation can be achieved at higher power densities.

PDF Article
More Like This
Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna
Appl. Opt. 49(13) C191-C199 (2010)

Stoichiometric investigations of laser-ablated brass plasma

D. N. Patel, P. K. Pandey, and R. K. Thareja
Appl. Opt. 51(7) B192-B200 (2012)

Quantitative analysis of Fuller’s earth using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

I. Rehan, M. Z. Khan, K. Rehan, S. Sultana, M. U. Rehman, R. Muhammad, M. Ikram, and H. Anwar
Appl. Opt. 58(16) 4227-4233 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.