Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 8,
  • pp. 1214-1221
  • (2000)

Self-Modeling Mixture Analysis by Interactive Principal Component Analysis

Not Accessible

Your library or personal account may give you access

Abstract

A key procedure for mixture analysis in self-modeling methods is to identify a pure wavelength (or pure variable) for each component in the mixture. A pure wavelength has intensity contributions from only one of the components in a mixture. In this paper, an interactive approach based on principal component analysis (IPCA) is presented for the pure wavelength selection. The approach is developed from a combination of key set factor analysis (KSFA) and SIMPLISMA (simple-to-use interactive self-modeling mixture analysis). Since all significant principal components are included and user interaction is available during the procedure of selecting pure wavelengths, this new approach effectively resolves complicated mixture data containing highly overlapping and nonlinear absorptivities. Moreover, the noise level of the original spectra is determined from secondary principal components and used in the scaling so that pure wavelength selection reflects the signal-to-noise ratio in the data. Simulated three-component mixture spectra are used to demonstrate the IPCA method; this is followed by a general approach for analyzing an esterification reaction using mid-infrared data. The KSFA, SIMPLISMA and IPCA methods are compared by analyzing a set of near-infrared spectra of methane, ethane, and propane mixtures. Results from the three pure wavelength methods are used as inputs to the method of alternating least-squares to produce predicted spectra very similar to the spectra of the pure components.

PDF Article
More Like This
Optical tolerancing and principal component analysis

Prateek Jain
Appl. Opt. 54(6) 1439-1442 (2015)

Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy

Melissa C. Skala, Gregory M. Palmer, Kristin M. Vrotsos, Annette Gendron-Fitzpatrick, and Nirmala Ramanujam
Opt. Express 15(12) 7863-7875 (2007)

Fast model-based multispectral imaging using nonnegative principal component analysis

Moon-Hyun Lee, Hanhoon Park, In Ryu, and Jong-Il Park
Opt. Lett. 37(11) 1937-1939 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.