Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 56,
  • Issue 11,
  • pp. 1484-1489
  • (2002)

FT-NIR Spectroscopic Analysis of Nitrogen in Cotton Leaves

Not Accessible

Your library or personal account may give you access

Abstract

Near-infrared spectroscopy was evaluated as a means to quantify the nitrogen content in fresh cotton leaves (<i>Gossypium hirsutum</i> L. var. Delta Pine 90) subjected to a factorial design experiment of varying nitrogen and water applications. Absorbance spectra were collected in the 10 000-4000 cm<sup>-1</sup> (1000-2500 nm) region from fresh cotton leaves over a two month portion of the growing season. Total nitrogen content was quantified by a wet chemistry Kjeldahl method for validation purposes. Partial least-squares regression analysis, using an automated grid search method, selected the spectral region 6041 to 5651 cm<sup>-1</sup> (1650-1770 nm) for analysis based on having the lowest standard error of prediction of total nitrogen content. This region includes protein spectral features. Nitrogen predictions resulted in a correlation coefficient of 0.83, and a standard error of prediction of 0.29% for nitrogen levels ranging from 3.1 to 5.2% total nitrogen. This approach has promise for providing rapid plant chemical analyses for cotton crop fertilization management purposes.

PDF Article
More Like This
Mean Effective Optical Constants of Cotton Leaves*

William A. Allen, Harold W. Gausman, and Arthur J. Richardson
J. Opt. Soc. Am. 60(4) 542-547 (1970)

Elemental analysis of cotton by laser-induced breakdown spectroscopy

Emily R. Schenk and Jose R. Almirall
Appl. Opt. 49(13) C153-C160 (2010)

Nondestructive nitrogen content estimation in tomato plant leaves by Vis-NIR hyperspectral imaging and regression data models

Razieh Pourdarbani, Sajad Sabzi, Mohammad H. Rohban, Ginés García-Mateos, and Juan I. Arribas
Appl. Opt. 60(30) 9560-9569 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.