Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 11,
  • pp. 1289-1297
  • (2010)

Application of Pulsed Buffer Gas Jets for the Signal Enhancement of Laser-Induced Breakdown Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

We report a new simple method for the signal enhancement of laser-induced breakdown spectroscopy using a pulsed buffer gas jet. The signal is enhanced up to more than 10 fold by using argon gas jets, which are injected through a pulsed nozzle onto the sample area to be analyzed. By synchronizing the buffer gas pulse with the laser pulse and optimizing the spatial arrangements between the gas jet and the sample surface, we have successfully exploited the useful properties of the buffer gas in open atmosphere. The signal-enhancement mechanism in our buffer gas jet has been discussed. Also, applications to various samples (metal, glass, and paper) have been demonstrated.

PDF Article
More Like This
Double-pulse laser-induced breakdown spectroscopy with liquid jets of different thicknesses

Akshaya Kumar, Fang Y. Yueh, and Jagdish P. Singh
Appl. Opt. 42(30) 6047-6051 (2003)

Interferometric investigation of the influence of argon buffer gas on the characteristics of laser-induced aluminum plasmas

Seong Y. Oh, Jagdish P. Singh, and Changhwan Lim
Appl. Opt. 53(17) 3593-3597 (2014)

Investigation of laser-induced breakdown spectroscopy of a liquid jet

Yuan Feng, Jiajun Yang, Jianmei Fan, Guanxin Yao, Xuehan Ji, Xianyi Zhang, Xianfeng Zheng, and Zhifeng Cui
Appl. Opt. 49(13) C70-C74 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved