Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 2,
  • pp. 201-210
  • (2010)

A Low Cost Time-Resolved Raman Spectroscopic Sensing System Enabling Fluorescence Rejection

Not Accessible

Your library or personal account may give you access

Abstract

This paper describes a novel, compact, fiber-coupled, time-resolved Raman spectroscopy system that takes advantage of recent developments in diode laser and data acquisition technology to exploit the natural temporal separation between Raman and fluorescence phenomena and thereby limits the influence of fluorescence on Raman observations. The unit has been designed to be particularly low cost and is intended to provide the foundation for a wide range of in-line or fieldable sensing devices that can enhance the potential and affordability of <i>in situ</i> chemical analyses. The system operating principles, design, and performance are discussed along with its advantages and tradeoffs relative to traditional continuous wave (CW) Raman techniques. The system relies on a 6.4 kHz repetition rate 900 ps pulsed diode laser operating in the visible wavelength range (532 nm) to enhance the quality of Raman observations relative to CW and infrared systems, particularly for analytes examined in the presence of fluorophores. Time-resolved photon counting, achieved through a combination of off-the-shelf and custom hardware and software, limits the influence of fluorescence on Raman observations under pulsed excitation. The paper presents examples of the quality of Raman signatures that can be obtained with the system for a variety of compounds such as trichloroethylene, benzene, an aqueous nitrate solution, and olive oil. Further, the paper demonstrates an approximately 15-fold improvement in signal-to-noise ratio when comparing long- and short-gated time-resolved photon counting acquisition scenarios for a neat benzene sample doped with rhodamine 6G at a concentration of 1 × 10<sup>–4</sup> M. The system's versatility and effectiveness in the assessment of complex mixtures representative of industrial or field settings is demonstrated through analysis of a gasoline sample. Additional discussion outlines how efficient signal averaging over extended observation periods can enable low concentration chemical analyses, particularly relevant in field settings.

PDF Article
More Like This
Characterization of time-resolved fluorescence response measurements for distributed optical-fiber sensing

Elena Sinchenko, W. E. Keith Gibbs, Claire E. Davis, and Paul R. Stoddart
Appl. Opt. 49(33) 6385-6390 (2010)

Multi-excitation Raman spectroscopy technique for fluorescence rejection

Scott T. McCain, Rebecca M. Willett, and David J. Brady
Opt. Express 16(15) 10975-10991 (2008)

Time-resolved Raman spectroscopy for in situ planetary mineralogy

Jordana Blacksberg, George R. Rossman, and Anthony Gleckler
Appl. Opt. 49(26) 4951-4962 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.