Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 3,
  • pp. 282-285
  • (2010)

Synchrotron Infrared Confocal Microspectroscopical Detection of Heterogeneity Within Chemically Modified Single Starch Granules

Not Accessible

Your library or personal account may give you access

Abstract

This reports the first detection of chemical heterogeneity in octenyl succinic anhydride modified single starch granules using a Fourier transform infrared (FT-IR) microspectroscopical technique that combines diffraction-limited infrared microspectroscopy with a step size that is less than the mask projected spot size focused on the plane of the sample. The high spatial resolution was achieved with the combination of the application of a synchrotron infrared source and the confocal image plane masking system of the double-pass single-mask Continuμm<sup>®</sup> infrared microscope. Starch from grains such as corn and wheat exists in granules. The size of the granules depends on the plant producing the starch. Granules used in this study typically had a median size of 15 μm. In the production of modified starch, an acid anhydride typically is reacted with OH groups of the starch polymer. The resulting esterification adds the ester carbonyl (1723 cm<sup>−1</sup>) organic functional group to the polymer and the hydrocarbon chain of the ester contributes to the CH<sub>2</sub> stretching vibration to enhance the intensity of the 2927 cm<sup>−1</sup> band. Detection of the relative modifying population on a single granule was accomplished by ratioing the baseline adjusted peak area of the carbonyl functional group to that of a carbohydrate band. By stepping a confocally defined infrared beam as small as 5 μm × 5 μm across a starch granule 1 μm at a time in both the <i>x</i> and <i>y</i> directions, the heterogeneity is detected with the highest possible spatial resolution.

PDF Article
More Like This
Stokes vector based polarization resolved second harmonic microscopy of starch granules

Nirmal Mazumder, Jianjun Qiu, Matthew R. Foreman, Carlos Macías Romero, Peter Török, and Fu-Jen Kao
Biomed. Opt. Express 4(4) 538-547 (2013)

Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration

Richard Cisek, Danielle Tokarz, Martin Steup, Ian J. Tetlow, Michael J. Emes, Kim H. Hebelstrup, Andreas Blennow, and Virginijus Barzda
Biomed. Opt. Express 6(10) 3694-3700 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.