Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 8,
  • pp. 885-891
  • (2011)

A Modified Golden Gate Attenuated Total Reflection (ATR) Cell for Monitoring Phase Transitions in Multicomponent Fluids at High Temperatures

Not Accessible

Your library or personal account may give you access

Abstract

A new continuous flow method using attenuated total reflection infrared (ATR-IR) spectroscopy has been developed for monitoring phase transitions in multicomponent fluids at high pressures and temperatures. Our approach uses Fourier transform infrared (FT-IR) and a modified Golden Gate attenuated total reflection (ATR) cell and exploits the fact that the absorbance of a vapor is much lower than that of the corresponding liquid to monitor the phase transition between vapor and liquid. We demonstrate that this method can provide quantitative measurements on both the dew point and the bubble point. We have validated our approach using three single-component systems (EtOH, MeOH, and H<sub>2</sub>O) and a binary system of EtOH + H<sub>2</sub>O, monitoring phase transitions at temperature up to 300 °C and pressure up to 10 MPa.

PDF Article
More Like This
Attenuated total reflectance spectroscopy with chirped-pulse upconversion

Hideto Shirai, Constance Duchesne, Yuji Furutani, and Takao Fuji
Opt. Express 22(24) 29611-29616 (2014)

Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy

Yi Zou, Qiao Liu, Xia Yang, Hua-Chuan Huang, Jiang Li, Liang-Hui Du, Ze-Ren Li, Jian-Heng Zhao, and Li-Guo Zhu
Biomed. Opt. Express 9(1) 14-24 (2018)

Detecting phase transitions in a CaCl2–H2O system at low temperatures using a fiber-optic Fresnel reflection sensor

Mani Priyadarshini, Venkata Rajanikanth Machavaram, Akella Sivaramakrishna, and Pachiyappan Arulmozhivarman
Appl. Opt. 56(11) 3229-3239 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved