Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 8,
  • pp. 892-900
  • (2011)

Solvent Interactions in Methanol/N, N-Dimethylamide Binary Systems Studied by Fourier Transform Infrared–Attenuated Total Reflection (FT-IR/ATR) and Two-Dimensional Correlation Spectroscopy (2D-COS)

Not Accessible

Your library or personal account may give you access

Abstract

The interaction of N,N-dimethyl formamide (DMF) and N,N-dimethyl acetamide (DMA) with methanol in solution mixtures was studied using Fourier transform infrared–attenuated total reflection (FT-IR/ATR) spectroscopy. The concentration-dependent FT-IR/ATR spectra of DMF/methanol and DMA/methanol mixtures were recorded in the wavenumber range 4000–650 cm<sup>–1</sup> to investigate wavenumber shifts as a consequence of hydrogen bonding interactions. In combination with two-dimensional correlation spectroscopy (2D-COS), the positional fluctuations observed in the ν(C=O) and ν(O–H) regions of DMF/DMA and methanol, respectively, have been discussed in terms of changing populations of differently hydrogen-bonded and interacting species of the same and different component molecules.

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Recent applications of FT-IR spectroscopy to polymer systems

J. L. Koenig and M. K. Antoon
Appl. Opt. 17(9) 1374-1385 (1978)

Attenuated total reflectance spectroscopy with chirped-pulse upconversion

Hideto Shirai, Constance Duchesne, Yuji Furutani, and Takao Fuji
Opt. Express 22(24) 29611-29616 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.