Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 9,
  • pp. 1062-1067
  • (2011)

Optimization of Informative Spectral Variables for the Quantification of EGCG in Green Tea Using Fourier Transform Near-Infrared (FT-NIR) Spectroscopy and Multivariate Calibration

Not Accessible

Your library or personal account may give you access

Abstract

Epigallocatechin-3-gallate (EGCG) is credited with the majority of the health benefits associated with green tea consumption. It has a high economic and medicinal value. The feasibility of using different variable selection approaches in Fourier transform near-infrared (FT-NIR) spectroscopy for a rapid and conclusive quantitative determination of EGCG in green tea was investigated. Graphically oriented multivariate calibration modeling procedures such as interval partial least squares (iPLS), synergy interval partial least squares (siPLS), and genetic algorithm optimization combined with siPLS (siPLS-GA) were applied to select the most efficient spectral variables that provided the lowest prediction error. The performance of the final model was evaluated according to the root mean square error of prediction (RMSEP) and coefficient of determination (<i>R</i><sup>2</sup>) for the prediction set. Experimental results showed that the siPLS-GA model obtained the best results in comparison to other models. The optimal models were achieved with <i>R</i><sup>2</sup><sub>p</sub> = 0.97 and RMSEP = 0.32. The model can be obtained with only 36 variables retained and it provides a robust model with good estimation accuracy. This demonstrates the potential of NIR spectroscopy with multivariate calibration methods to quickly detect the bioactive component in green tea.

PDF Article
More Like This
Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.