Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 66,
  • Issue 7,
  • pp. 835-841
  • (2012)

Determination of Hydrodynamic Properties of Bare Gold and Silver Nanoparticles as a Fluorescent Probe Using Its Surface-Plasmon-Induced Photoluminescence by Fluorescence Correlation Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Noble-metal nanoparticles labeled with fluorescent molecules are used in a variety of applications requiring the measurement of size and diffusion properties of single nanoprobes. We have successfully used intrinsic surface-plasmon-induced photoluminescence (SPPL) signatures of monodispersed bare gold and silver nanoparticles in water to detect and measure their precise diffusion coefficient, concentration and hydrodynamic radius by fluorescence correlation spectroscopy (FCS). Measurement of the effective hydrodynamic radius confirms particle size to be 80 ± 8 and 64 ± 14 nm for gold and silver, respectively, which is in excellent agreement with scanning electron microscopic measurements made on the same particles. Detection of bare gold and silver nanoparticles at the single-molecule level with moderately high value of “per particle brightness” (PPB) confirms those particles to be used as fluorescent probes in biological research and in different medical and biotechnology applications where fluorescence detection plays a vital role. Additionally, these results demonstrate an alternative method for measuring hydrodynamic properties, particularly the size-distribution of bare noble-metal nanoparticles in solution using data-fitting algorithm for FCS based on the maximum entropy method (MEMFCS).

PDF Article
More Like This
Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays

Hsiang-Lin Huang, Chen Feng Chou, Shi Hua Shiao, Yi-Cheng Liu, Jian-Jang Huang, Shien Uang Jen, and Hai-Pang Chiang
Opt. Express 21(S5) A901-A908 (2013)

Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski
Opt. Express 14(17) 7878-7888 (2006)

Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration

Deep Punj, Juan de Torres, Hervé Rigneault, and Jérôme Wenger
Opt. Express 21(22) 27338-27343 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved