Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 67,
  • Issue 11,
  • pp. 1275-1284
  • (2013)

Line Selection and Parameter Optimization for Trace Analysis of Uranium in Glass Matrices by Laser-Induced Breakdown Spectroscopy (LIBS)

Not Accessible

Your library or personal account may give you access

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been evaluated for the determination of uranium in real-world samples such as uraninite. NIST Standard Reference Materials were used to evaluate the spectral interferences on detection of uranium. The study addresses the detection limit of LIBS for several uranium lines and their relationship to non-uranium lines, with emphasis on spectral interferences. The data are discussed in the context of optimizing the choice of emission lines for both qualitative and quantitative analyses from a complex spectrum of uranium in the presence of other elements. Temporally resolved spectral emission intensities, line width, and line shifts were characterized to demonstrate the parameter influence on these measurements. The measured uranium line width demonstrates that LIBS acquired with moderately high spectral resolution (e.g., by a 1.25 m spectrometer with a 2400 grooves/mm grating) can be utilized for isotope shift measurements in air at atmospheric pressure with single to tens of parts per million (ppm) level detection limits, as long as an appropriate transition is chosen for analysis.

PDF Article
More Like This
Practical high-resolution detection method for laser-induced breakdown spectroscopy

Andrew J. Effenberger and Jill R. Scott
Appl. Opt. 51(7) B165-B170 (2012)

Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

Kyle C. Hartig, Sivanandan S. Harilal, Mark C. Phillips, Brian E. Brumfield, and Igor Jovanovic
Opt. Express 25(10) 11477-11490 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved