Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 67,
  • Issue 12,
  • pp. 1427-1436
  • (2013)

Simultaneous Monitoring of Curing Shrinkage and Degree of Cure of Thermosets by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

We present a novel methodology to simultaneously monitor of the degree of cure and curing shrinkage of thermosetting formulations. This methodology is based on the observation of changes in the infrared absorption of reactive functional groups and the groups used as a standard reference for normalization. While the optical path length is exact and controlled in transmission infrared spectroscopy, in attenuated total reflection Fourier transform infrared (ATR FT-IR), the exact determination of volume changes requires the measurement of the refractive indices of the studied system throughout the curing process or at least an indirect parallel measurement of this property. The methodology presented here allows one to achieve quantitative measurements of the degree of cure and shrinkage for thermosets using in situ ATR FT-IR spectroscopy.

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Terahertz time-domain spectroscopy for monitoring the curing of dental composites

Michael Schwerdtfeger, Sina Lippert, Martin Koch, Andreas Berg, Stefan Katletz, and Karin Wiesauer
Biomed. Opt. Express 3(11) 2842-2850 (2012)

Attenuated total reflectance spectroscopy with chirped-pulse upconversion

Hideto Shirai, Constance Duchesne, Yuji Furutani, and Takao Fuji
Opt. Express 22(24) 29611-29616 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.