Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 5,
  • pp. 531-535
  • (2014)

A Modified Infrared Spectrometer with High Time Resolution and Its Application for Investigating Fast Conformational Changes of the GTPase Ras

Not Accessible

Your library or personal account may give you access

Abstract

Time-resolved infrared spectroscopy is a valuable tool for the investigation of proteins and protein interactions. The investigation of many biological processes is possible by means of caged compounds, which set free biologically active substances upon light activation. Some caged compounds could provide sub-nanosecond time resolution, e.g., <i>para</i>-hydroxyphenacyl-guanosine 5′-triphosphate (GTP) forms GTP in picoseconds. However, the time resolution in single shot experiments with rapid-scan Fourier transform infrared (FT-IR) spectrometers is limited to about 10 ms. Here we use an infrared diode laser instead of the conventional globar and achieve a time resolution of 100 ns. This allows for the time-resolved measurement of the fast Ras<sub>off</sub> to Ras<sub>on</sub> conformational change at room temperature. We quantified the activation parameters for this reaction and found that the free energy of activation for this reaction is mainly enthalpic. Investigation of the same reaction in the presence of the Ras binding domain of the effector Raf (RafRBD) reveals a four orders of magnitude faster reaction, indicating that Ras·RafRBD complex formation directly induces the conformational change. Recent developments of broadly tunable quantum cascade lasers will further improve time resolution and usability of the setup. The reported 100 ns time resolution is the best achieved for a non-repetitive experiment so far.

PDF Article
More Like This
Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes

Ann-Kathrin Kniggendorf, Merve Meinhardt-Wollweber, Xiaogang Yuan, Bernhard Roth, Astrid Seifert, Niels Fertig, and Carsten Zeilinger
Biomed. Opt. Express 5(7) 2054-2065 (2014)

High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events

D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French
Opt. Express 15(24) 15656-15673 (2007)

Far-infrared high-resolution Fourier transform spectrometer

Bruno Carli, Massimo Carlotti, Francesco Mencaraglia, and Enzo Rossi
Appl. Opt. 26(18) 3818-3822 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.