Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 31,
  • Issue 2,
  • pp. 116-121
  • (1977)

Investigation of the Chemical Structure of Coal by Nuclear Magnetic Resonance and Infrared Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

The distributions of hydrogen and carbon among various organic structures in solvent extracts of selected coals have been determined by high-resolution proton and carbon-13 magnetic resonance spectrometry. Structural parameters including the aromaticity, the degree of aromatic ring substitution, and the average size of the condensed aromatic ring system have been deduced for each extract using the nuclear magnetic resonance data in conjunction with the elemental analysis of the material. Complementary infrared spectral studies of the extracts and their parent coals have been used to estimate the aromaticities of <i>whole</i> coals. The potential of two other magnetic resonance techniques, proton-enhanced nuclear induction spectroscopy and proton-decoupled high-resolution carbon-13 magnetic resonance, in coal research is discussed. The results of the present investigation are in accord with commonly held views of coal metamorphism; they do not, however, support recent reports challenging the classical view that coals are highly aromatic materials.

PDF Article
More Like This
Nuclear magnetic resonance imaging

William P. Rothwell
Appl. Opt. 24(23) 3958-3968 (1985)

Electro-mechano-optical detection of nuclear magnetic resonance

Kazuyuki Takeda, Kentaro Nagasaka, Atsushi Noguchi, Rekishu Yamazaki, Yasunobu Nakamura, Eiji Iwase, Jacob M. Taylor, and Koji Usami
Optica 5(2) 152-158 (2018)

The Use of Infrared Spectra of Chars in Coal Structure Research

R. A. Friedel
Appl. Opt. 2(11) 1109-1111 (1963)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved