OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 31, Iss. 6 — Nov. 1, 1977
  • pp: 541–547

Direct Determination of Manganese in Gasoline by Atomic Absorption Spectrometry in the Nitrous Oxide-Hydrogen Flame

R. J. Lukasiewicz and B. E. Buell

Applied Spectroscopy, Vol. 31, Issue 6, pp. 541-547 (1977)


View Full Text Article

Acrobat PDF (753 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The nitrous oxide-hydrogen flame provides efficient combustion of aspirated gasoline without the formation of luminescent unburned carbon particles. Direct aspiration of gasoline into this flame is practical even at very high nebulizer uptake rates and is thus the basis for rapid direct determination of manganese by atomic absorption spectrometry. The atomic absorption spectrophotometer, however, must be calibrated by using standards prepared from the same organometallic manganese compound present in the samples. Atomic absorption response for manganese naphthenate, manganese octoate, and methylcyclopentadienylmanganese tricarbonyl (MMT) can differ by as much as 45% relative depending on the nebulizer uptake rate. At the optimum nebulizer uptake rate used, 6 ml/min, the difference between absorption response of the most sensitive compound, manganese naphthenate, and the least sensitive, MMT, is 15%. Very high nebulizer efficiencies and relatively high uptake rates result in high sample transport to the flame. Absorption at a given concentration for all compounds increases in a linear fashion with the amount of sample transported to the flame up to about 3.0 ml/min. At 4.0 ml/min equivalent liquid phase volume delivered to the flame maximum absorbance occurs; absorbance diminishes rapidly thereafter. Plots of absorption vs equivalent liquid phase volume delivered to the flame passed through the origin for manganese naphthenate and manganese octoate. The same plot for MMT shows a positive intercept on the volume delivered axis, which indicates a consistent loss of absorption for MMT relative to the naphthenate and the octoate for all rates of sample delivery to the flame.

Citation
R. J. Lukasiewicz and B. E. Buell, "Direct Determination of Manganese in Gasoline by Atomic Absorption Spectrometry in the Nitrous Oxide-Hydrogen Flame," Appl. Spectrosc. 31, 541-547 (1977)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-31-6-541

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited