OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 34, Iss. 2 — Mar. 1, 1980
  • pp: 233–235

The Effective Thickness in Internal Reflection Spectroscopy

D. J. Epstein

Applied Spectroscopy, Vol. 34, Issue 2, pp. 233-235 (1980)


View Full Text Article

Acrobat PDF (413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In internal reflection spectroscopy the intensity loss per reflection can be described conveniently in terms of a parameter de, the effective thickness of the absorbing sample. There is a temptation to seek correlation between this parameter and the extra path length L that arises when the Goos-Hänchen shift is included in the rat picture for total internal reflection (Fig. 1). This shift occurs because, under conditions of total internal reflection, the effective reflecting plane does not coincide with the physical interface. As a result the specularly reflected ray is displaced parallel to itself by the distance D and there is a corresponding shift L = D/cos θ along the interface. Hirschfeld has compared the functional forms for de and L, as given in the literature, and has observed that the two quantities agree only at the critical angle. In this note we examine the power flows associated with both the Goos-Hänchen shift and the power dissipated in the absorbing sample. This approach allows us to determine the ratio de/L without having to carry out an explicit calculation for the separate quantities, and provides a physical basis for understanding why this ratio differs from unity at all angles but the critical.

Citation
D. J. Epstein, "The Effective Thickness in Internal Reflection Spectroscopy," Appl. Spectrosc. 34, 233-235 (1980)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-34-2-233


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited