OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 34, Iss. 3 — May. 1, 1980
  • pp: 351–360

A New Nonlinear Least Square Algorithm for Voigt Spectral Lines

R. J. Noll and A. Pires

Applied Spectroscopy, Vol. 34, Issue 3, pp. 351-360 (1980)

View Full Text Article

Acrobat PDF (724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper a new fitting algorithm which works with Voigt functions is discussed. The fitting algorithm used is an extension of the rapidly convergent gradient method of Fletcher and Powell, who claim faster convergence than the Newton-Raph-son method which has been used by Chang and Shaw for fitting Lorentz line widths. The Fletcher and Powell algorithm involves the effects of second derivatives although second derivatives are not explicitly calculated. In our algorithm, first and second derivatives are computed not numerically, but analytically via a modification to Drayson's Voigt function subroutine. This algorithm provides rapid convergence even when there are few data points. Profiles have been fitted with as few as five data points. Our typical line fits involve 40 points. The run time of the algorithm has been compared with the shrinking cube algorithm of Hillman and found to be at least 10 times faster under identical starting conditions. Sample single line and single line plus background are shown illustrating the speed and efficiency of the new algorithm, as well as the importance of good zero-order estimates to start the iterations.

R. J. Noll and A. Pires, "A New Nonlinear Least Square Algorithm for Voigt Spectral Lines," Appl. Spectrosc. 34, 351-360 (1980)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited