OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 38, Iss. 2 — Mar. 1, 1984
  • pp: 124–135

Simulation of Current Waveforms in High Voltage Spark Sources III: Numerical Integration and Inclusion of Gap Dynamic Impedance

Alexander Scheeline

Applied Spectroscopy, Vol. 38, Issue 2, pp. 124-135 (1984)


View Full Text Article

Acrobat PDF (1354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Procedures for simulating discharge currents and voltages in an adjustable waveform spark source are outlined, and comparisons are made between simulated and observed data. Bulirsch-Stoer numerical integration is used to allow solution of the requisite nine simultaneous differential equations. An approximate gap model is employed which demonstrates how dynamic gap properties may be incorporated into modeling. This provides a mechanism for coupling fundamental physical knowledge of gap processes to electrical engineering considerations in source design. Comparison to earlier work involving closed form solution of simpler models is made.

Citation
Alexander Scheeline, "Simulation of Current Waveforms in High Voltage Spark Sources III: Numerical Integration and Inclusion of Gap Dynamic Impedance," Appl. Spectrosc. 38, 124-135 (1984)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-38-2-124


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited