Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 39,
  • Issue 1,
  • pp. 101-109
  • (1985)

A Nanosecond Photon-Counting Fluorimetric System Using a Modified Multichannel Vernier Chronotron

Not Accessible

Your library or personal account may give you access

Abstract

A new time-resolved photon-counting instrument with high data-gathering efficiency is described. The principle of operation is based on the measurement of the nanosecond temporal distribution of the emitted photon burst during the short duration of transient emission. The instrument is characterized by the unique capabilities of a modified vernier chronotron with plural coincidence circuits and serial-timing data memories, which serve as an efficient multichannel event-time analyzer of 1.5-ns time resolution. The data-gathering efficiency is improved by a factor of 20 or more in comparison with that of the conventional single-photon counting method. In regular operation, the time history of transient emission for the period of 144 ns is obtained; and for phenomena with longer duration, the time-scale expansion mode of operation is provided. To demonstrate the whole system performance, a fluorescence decay curve of 1-ppm quinine sulfate in 0.1-N H<sub>2</sub>SO<sub>4</sub> is presented.

PDF Article
More Like This
Multichannel Photon Counting Spectrographs Detector System

C. M. Savage and P. D. Maker
Appl. Opt. 10(4) 965-968 (1971)

Photon Counting

G. A. Morton
Appl. Opt. 7(1) 1-10 (1968)

The Use of Photomultiplier Tubes for Photon Counting

R. Foord, R. Jones, C. J. Oliver, and E. R. Pike
Appl. Opt. 8(10) 1975-1989 (1969)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved