Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 39,
  • Issue 1,
  • pp. 73-84
  • (1985)

Multivariate Least-Squares Methods Applied to the Quantitative Spectral Analysis of Multicomponent Samples

Not Accessible

Your library or personal account may give you access

Abstract

In an extension of earlier work, weighted multivariate least-squares methods of quantitative FT-IR analysis have been developed. A linear least-squares approximation to nonlinearities in the Beer-Lambert law is made by allowing the reference spectra to be a set of known mixtures. The incorporation of nonzero intercepts in the relation between absorbance and concentration further improves the approximation of nonlinearities while simultaneously accounting for nonzero spectral baselines. Pathlength variations are also accommodated in the analysis, and under certain conditions, unknown sample pathlengths can be determined. All spectral data are used to improve the precision and accuracy of the estimated concentrations. During the calibration phase of the analysis, pure component spectra are estimated from the standard mixture spectra. These can be compared with the measured pure component spectra to determine which vibrations experience nonlinear behavior. In the predictive phase of the analysis, the calculated spectra are used in our previous least-squares analysis to estimate sample component concentrations. These methods were applied to the analysis of the IR spectra of binary mixtures of esters. Even with severely overlapping spectral bands and nonlinearities in the Beer-Lambert law, the average relative error in the estimated concentrations was <1%.

PDF Article
More Like This
Baseline correction for Raman spectra using a spectral estimation-based asymmetrically reweighted penalized least squares method

Yixin Guo, Weiqi Jin, Weilin Wang, Yuqing He, and Su Qiu
Appl. Opt. 62(18) 4766-4776 (2023)

Computer Analysis of Resonance Profiles by the Method of Least Squares

David L. Ederer
Appl. Opt. 8(11) 2315-2325 (1969)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved