OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 39, Iss. 2 — Mar. 1, 1985
  • pp: 243–253

Site-Selective Nonlinear Four-Wave Mixing by Multiply Enhanced Nonparametric and Parametric Spectroscopy

S. H. Lee, J. K. Steehler, D. C. Nguyen, and J. C. Wright

Applied Spectroscopy, Vol. 39, Issue 2, pp. 243-253 (1985)

View Full Text Article

Acrobat PDF (1023 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A family of nonlinear four-wave mixing techniques that are capable of site-selective organic spectroscopy are presented. Three lasers are used in the methods in order to achieve fully resonant mixing. Three lasers are shown to provide better sensitivity, selectivity, and versatility in the study of ground and excited electronic state vibrational spectroscopy. New approaches become possible in the establishment of resonances that translate the output signal from the normal Stokes or anti-Stokes side of the lasers to intermediate positions that are free of fluorescence interference. These new methods are divided into Multiply Enhanced Parametric Spectroscopy (MEPS) and Multiply Enhanced Nonparametric Spectroscopy (MENS), depending upon the spectroscopic characteristics for site-selective applications. The characteristics of MEPS and MENS are found to be quite different and depend upon the number and separation of the sites, the power of the lasers, the relative shifts of the levels, and the correlation effects in the inhomogeneous broadening. The feasibility of MENS and the site-selective capability of both CARS and MENS is demonstrated experimentally with the use of the pentacene: p-terphenyl system as a model.

S. H. Lee, J. K. Steehler, D. C. Nguyen, and J. C. Wright, "Site-Selective Nonlinear Four-Wave Mixing by Multiply Enhanced Nonparametric and Parametric Spectroscopy," Appl. Spectrosc. 39, 243-253 (1985)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited