Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 39,
  • Issue 4,
  • pp. 737-739
  • (1985)

Complete Elimination of Specular Reflectance in Infrared Diffuse Reflectance Measurements

Not Accessible

Your library or personal account may give you access

Abstract

The Kubelka-Munk relationship is the equation most commonly used to describe the reflectance from a scattering medium. This equation breaks down, however, in several important situations in the mid-infrared. Most notably, the relationship does not account for specular reflectance, which is simply the energy reflected from the front surface of the sample. When a sample reflects diffusely and specularly, as do all real-world samples, there is a specular reflectance spectrum superimposed on the diffuse reflectance spectrum, and deviations from this equation occur. In the case of organic samples, this causes a curved line (concave downward) for the plot of <i>f</i>(R<sub>∞</sub>) or Kubelka-Munk units vs. sample weight percent in a nonabsorbing matrix. For inorganic samples, the effect can be more severe. Since the specular reflectance of inorganic bands can be much greater than organics, often complete band inversions (<i>reststrahlen</i> bands) or derivative shaped peaks result. In either case, quantitative analysis is not straightforward, and in the latter case, even qualitative interpretation is difficult.

PDF Article
More Like This
Diffuse reflectance infrared spectrometry: characteristics of the diffuse and specular components

Paul W. Yang and Henry H. Mantsch
Appl. Opt. 26(2) 326-330 (1987)

Reflectance of Perfect Diffuse and Specular Samples in the Integrating Sphere

Bjarne J. Hisdal
J. Opt. Soc. Am. 55(9) 1122-1125 (1965)

Diffuse and Specular Reflectance from Rough Surfaces

Bram van Ginneken, Marigo Stavridi, and Jan J. Koenderink
Appl. Opt. 37(1) 130-139 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.