Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 40,
  • Issue 7,
  • pp. 1062-1065
  • (1986)

Copper-Coated Cylindrical Internal Reflection Elements for Investigating Interfacial Phenomena

Not Accessible

Your library or personal account may give you access

Abstract

Techniques for coating thin copper films on the surface of cylindrical germanium internal reflection elements are described. These films were then characterized in an aqueous environment. The expected exponential relationship between the depth of penetration of the evanescent wave into water and the thickness of the copper film was verified experimentally. The stability of vacuum-deposited copper coatings was strong enough that the internal reflection element could be exposed to an aqueous solution of a polysaccharide for more than 40 h. The weak adhesion of polysaccharides to copper surfaces was studied spectroscopically.

PDF Article
More Like This
Infrared characterization of surfaces and coatings by internal-reflection spectroscopy

E. D. Palik, J. W. Gibson, R. T. Holm, M. Hass, M. Braunstein, and B. Garcia
Appl. Opt. 17(11) 1776-1785 (1978)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved