Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 40,
  • Issue 8,
  • pp. 1224-1231
  • (1986)

Stark Structure Observation in Rydberg States of Li in Flames by Laser-Enhanced Ionization: A New Method for Probing Local Electrical Fields in Flames

Not Accessible

Your library or personal account may give you access

Abstract

In Laser-Enhanced Ionization spectrometry (LEI) in flames the measured signal consists of the electrons and ionized atoms which follow a laser excitation due to the enhanced thermal ionization rate of an excited state compared with the ground state. The charged particles are collected by applying a voltage across the flame and measuring the corresponding current increase. The authors report the observation of the linear Stark effect in highly excited states of Li in flames when laser-enhanced ionization is utilized. The experiments show good agreement with the theory for the linear Stark effect. The atoms were excited by ultraviolet light from the ground state (2s) to <i>n</i>p states (<i>n</i> = 8-22). Collisional broadening is the dominant broadening mechanism for the lower states while the Stark effect dominates at higher values of <i>n</i> for laboratory electrical field strengths. In the analytical use of LEI for trace element analysis the presence of the Stark effect leads to a reduction of the sensitivity of the method, because it decreases the peak-height of the signal. A new method, which utilizes the Stark effect, is presented for nonintrusive determination of the electrical field distribution in flames.

PDF Article
More Like This
Constant-electric-field ionization mass spectroscopy in laser-excited Yb+ Rydberg states

W. Huang, X. Y. Xu, C. B. Xu, M. Xue, and D. Y. Chen
J. Opt. Soc. Am. B 12(6) 961-963 (1995)

Laser-enhanced flame ionization detector

Terrill A. Cool and John E. M. Goldsmith
Appl. Opt. 26(17) 3542-3551 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved