Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 41,
  • Issue 7,
  • pp. 1147-1151
  • (1987)

Thermal Decomposition of Energetic Materials 26. Simultaneous Temperature Measurements of the Condensed Phase and Rapid-Scan FT-IR Spectroscopy of the Gas Phase at High Heating Rates

Not Accessible

Your library or personal account may give you access

Abstract

Rapid-scan infrared spectroscopy (RSFT-IR) with better than 100-ms temporal resolution has been used to quantify the gas decomposition products of energetic materials in real time at various heating rates up to 800°C/s and under buffer gas pressures of 1 to 1000 psi. A new method is described that permits simultaneous real-time recording of the temperature of the condensed phase and of the IR spectra of the gaseous products under the above conditions. Endothermic and exothermic events in the condensed phase can now be correlated with the evolved gases under conditions approaching those of combustion. The design and procedure for using the cell are given and are applied to the thermolysis of 1,7-diazido-2,4,6-trinitro-2,4,6-triazaheptane (DATH) and pentaery-thrityltetrammonium nitrate (PTTN).

PDF Article
More Like This
Subsampling phase retrieval for rapid thermal measurements of heated microstructures

Lucas N. Taylor and Joseph J. Talghader
Opt. Lett. 41(14) 3189-3192 (2016)

Quantitative measurements by Fourier-transform infrared spectroscopy of toxic gas production during inhibition of JP-8 fires by CF3Br and C3F7H

Steven H. Modiano, Kevin L. McNesby, Paul E. Marsh, William Bolt, and Craig Herud
Appl. Opt. 35(21) 4004-4008 (1996)

Quantification of solid-phase chemical reactions using the temperature-dependent terahertz pulsed spectroscopy, sum rule, and Arrhenius theory: thermal decomposition of α-lactose monohydrate

G. A. Komandin, K. I. Zaytsev, I. N. Dolganova, V. S. Nozdrin, S. V. Chuchupal, V. B. Anzin, and I. E. Spektor
Opt. Express 30(6) 9208-9221 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved