OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 42, Iss. 2 — Feb. 1, 1988
  • pp: 272–277

A New Dual-Channel Frequency-Domain Fluorometer for the Determination of Picosecond Rotational Correlation Times

Frank V. Bright, Curtis A. Monnig, and Gary M. Hieftje

Applied Spectroscopy, Vol. 42, Issue 2, pp. 272-277 (1988)


View Full Text Article

Acrobat PDF (622 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A new dual-channel multifrequency fluorometer is described which employs a mode-locked argon-ion laser as a polarized excitation source. The laser produces high-frequency sinusoidal intensity modulations in the MHz to GHz regime which are used to simultaneously probe the fluorescent molecules. The resulting orthogonally polarized components of the emission are collected by two opposite matched detection channels. Because both the parallel [I(ω)] and perpendicular [I(ω)] components of the emission are collected simultaneously and at all modulation frequencies, information about the molecules' rotational rate can be rapidly deduced. With the new instrument, rotational correlation times as short as 15 ps can be routinely determined with data-acquisition times as short as 10 ms. Commonly, however, we employ collection times of several seconds to permit the averaging of between 100 and 500 scans. Examples which demonstrate the utility of the new instrument include the determination of the rotational correlation times for rhodamine 6G, fluorescein, and rubrene as a function of solvent viscosity. In addition, results are presented for the resolution of rhodamine 6G associated with beta-cyclodextrin. In the beta-cyclodextrin studies, little spectral (excitation/emission) or temporal (fluorescence lifetime) change was noted upon association. However, a significant difference exists between rotational correlation times of the free fluorophore and the fluorophore included by beta-cyclodextrin. This difference enables the formation constant for the association to be determined, a measurement which would be impossible with conventional techniques.

Citation
Frank V. Bright, Curtis A. Monnig, and Gary M. Hieftje, "A New Dual-Channel Frequency-Domain Fluorometer for the Determination of Picosecond Rotational Correlation Times," Appl. Spectrosc. 42, 272-277 (1988)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-42-2-272


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited