Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 42,
  • Issue 6,
  • pp. 1032-1039
  • (1988)

Modulation of Commercial Hollow Cathode Lamps by a Magnetic Field in a Magnetron Configuration

Not Accessible

Your library or personal account may give you access

Abstract

An oscillating magnetic field generated by an underdamped capacitive discharge in a large coil is used to modulate the intensity of commercial hollow cathode lamps. Lamps are oriented in the coil so that the magnetic field is coaxial with the hollow cathode. This results in a pseudo-magnetron configuration where the magnetic field is normal to the electric field in the cathode space charge. This configuration results in ExB and diamagnetic drift motions of positive ions and electrons, so that these particles are trapped in circular orbits parallel to the cathode surface. Radiation intensity vs. time profiles are presented for Mn, Cr, Hg, Ag, and V lamps. With relatively high magnetic field strengths and low lamp current, periods of very low lamp intensity are obtained with high-intensity spikes occurring when the magnetic field changes direction. With lower field strengths and higher lamp current, a variety of patterns of intensity modulation is observed.

PDF Article
More Like This
Ionization and excitation of uranium in a hollow-cathode lamp

J. M. Gagné, P. Pianarosa, G. Larin, J. P. Saint-Dizier, and P. Bouchard
Appl. Opt. 20(21) 3770-3773 (1981)

Birefringent atomic vapor laser lock in a hollow cathode lamp

Takumi Sato, Yusuke Hayakawa, Naohiro Okamoto, Yusuke Shimomura, Takatoshi Aoki, and Yoshio Torii
J. Opt. Soc. Am. B 39(1) 155-159 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved