Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 43,
  • Issue 3,
  • pp. 367-372
  • (1989)

Near-Infrared Surface-Enhanced Raman Spectroscopy. Part II: Copper and Gold Colloids

Not Accessible

Your library or personal account may give you access

Abstract

Near-infrared (NIR) surface-enhanced Raman spectra (SERS) on copper and gold metal colloids were obtained with a Fourier transform Raman spectrometer using a Nd:YAG laser (1.064 μm) for excitation. Enhanced spectra were observed for pyridine and 3-chloropyridine (CP) on copper colloids and for tris(orthophenanthroline)ruthenium(II), Ru(o-phen)<sub>3</sub><sup>2+</sup>, on copper and gold colloids. The copper-colloid surface-enhanced Raman spectra of pyridine and CP were compared with spectra measured for these molecules on copper electrodes. NIR-SERS enhancements on the metal colloids were at least as large as for visible-wavelength excited SERS. Good-quality spectra of Ru(o-phen)<sub>3</sub><sup>2+</sup> were obtained at solution concentrations as low as 0.025 mM.

PDF Article
More Like This
Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis

Duo Lin, Shangyuan Feng, Jianji Pan, Yanping Chen, Juqiang Lin, Guannan Chen, Shusen Xie, Haishan Zeng, and Rong Chen
Opt. Express 19(14) 13565-13577 (2011)

Method of optical manipulation of gold nanoparticles for surface-enhanced Raman scattering in a microcavity

Kun Xin, Xiaofeng Shi, Yi Liu, Zimeng Zhang, Wenjie Jia, and Jun Ma
Opt. Express 28(6) 8734-8743 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.