OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 43, Iss. 7 — Sep. 1, 1989
  • pp: 1223–1232

Easily and Noneasily Ionizable Element Matrix Effects in Inductively Coupled Plasma Optical Spectrometry

John W. Olesik and Eric J. Williamsen

Applied Spectroscopy, Vol. 43, Issue 7, pp. 1223-1232 (1989)


View Full Text Article

Acrobat PDF (975 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Changes in analyte emission intensities occur when either easily or non-easily ionizable elements are present as concomitant species at a concentration of 0.05 M. The direction (enhancement or depression of emission signals) and magnitude of the matrix effect are strongly dependent on radial and vertical location in the plasma. At some heights in the ICP, matrix-induced depressions of the emission intensity in the center are equal to enhancements off-center. As a result, no change in the line-of-sight emission intensity is observed. Initial fluorescence measurements suggest that the number of analyte ions in the normal analytical zone decreases in the presence of each of the concomitant species studied. However, it appears that the presence of concomitant species enhances the fraction of ions that are excited and that therefore emit light. The presence of Na and K resulted in larger enhancements in the fraction of ions excited than did the presence of Fe, Ni, or Ba.

Citation
John W. Olesik and Eric J. Williamsen, "Easily and Noneasily Ionizable Element Matrix Effects in Inductively Coupled Plasma Optical Spectrometry," Appl. Spectrosc. 43, 1223-1232 (1989)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-43-7-1223

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited