Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 44,
  • Issue 1,
  • pp. 147-150
  • (1990)

Observation Note on Saturation Behavior of the Fluorescence Excitation Spectrum of OH in a Flame

Not Accessible

Your library or personal account may give you access

Abstract

Laser-induced fluorescence (LIF) is one of the most popular techniques for flames diagnostics. Temperature measurements are in general obtained by scanning the laser wavelength through a molecular absorption band in order to probe the ground-state rotational population. OH is frequently used as thermometric species because of its favorable spectral characteristics and of its recurrence in combustion processes. Minor species concentration measurements are also performed by LIF, owing to its great sensitivity. While excitation spectra for temperature measurements must be carried out with lowintensity probing beams (linear regime), absolute concentration measurements require high-power excitation to overcome quenching problems (saturation regime). Moreover this latter regime allows maximum sensitivity and minimum dependence from laser intensity fluctuations. However, the quantitative interpretation of saturated LIF signals poses some problems not yet completely resolved (see Ref. 5 and references therein). The most typical is the evaluation of the effective probe volume due to nonuniformities in the intensity distribution of focused laser beams.

PDF Article
More Like This
Temperature measurement by two-line laser-saturated OH fluorescence in flames

Robert P. Lucht, Normand M. Laurendeau, and Donald W. Sweeney
Appl. Opt. 21(20) 3729-3735 (1982)

Spatially resolved saturated absorption measurements of OH in methane-air flames

Giorgio Zizak, Francesco Cignoli, and Sergio Benecchi
Appl. Opt. 26(19) 4293-4297 (1987)

Two-photon-excited fluorescence measurements of OH concentration in a hydrogen–oxygen flame

J. E. M. Goldsmith and Normand M. Laurendeau
Appl. Opt. 25(2) 276-283 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.