Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 46,
  • Issue 12,
  • pp. 1762-1768
  • (1992)

Sampling, Excitation, and Ionization Characteristics of a Planar Magnetron Glow-Discharge Device

Not Accessible

Your library or personal account may give you access

Abstract

Measurements of mass loss during sputtering, atomic emission intensities, and ionization characteristics are described for a coaxial magnetron glow-discharge device. By the use of the magnetic field from a coaxial magnet pair placed behind the cathode, stable plasma operation is achieved for all pressures from 0.0004 Torr (0.05 Pa) to over 2.5 Torr (330 Pa). Mass loss measurement values from pellets of Al, Cu, brass, Zn, and Au located in the region of greatest sputtering show much larger values at pressures which are lower than those usually used with glow-discharge excitation and ionization sources. Emission line ratio measurements at the lower pressures indicate that populations of low-energy electronic states are greater than equilibrium values. This observation suggests that the plasma is dominated by ionization processes rather than by recombination processes. Emission line ratio and mass spectrometric measurements also indicate that ionization is increased at the lower pressures.

PDF Article
More Like This
Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering

Azer P. Yalin, Yury Z. Ionikh, and Richard B. Miles
Appl. Opt. 41(18) 3753-3762 (2002)

Spectroscopic study of a dc gas magnetron discharge

V. I. Miljevic
Appl. Opt. 22(6) 904-907 (1983)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.