OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy

| PUBLISHED BY SAS — AVAILABLE FROM SAS AND OSA

  • Vol. 47, Iss. 10 — Oct. 1, 1993
  • pp: 1585–1593

Ice/Solid Adhesion Analysis Using Low-Temperature Raman Microprobe Shear Apparatus

Nishikant Sonwalkar, S. Shyam Sunder, and S. K. Sharma

Applied Spectroscopy, Vol. 47, Issue 10, pp. 1585-1593 (1993)


View Full Text Article

Acrobat PDF (4703 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In order to understand the molecular mechanics involved in the adhesion of a bimaterial interface bond, a Raman microprobe shear apparatus has been designed and fabricated. The apparatus is fabricated to perform a pure shear experiment on a bimaterial interface produced by the vapor deposition of a thin film of ice on a cold metallic substrate under a controlled temperature, humidity, and vapor-flow rate environment. The textures of four metal surfaces (titanium, copper, aluminum, stainless steel) and one polymer surface have been investigated with the use of the scanning electron micrograph. The shear experiment is optically coupled to a Raman microprobe at the 180° and 135° scattering geometry. The Raman spectra provide in situ information regarding the molecular structure and vibrational modes at the bimaterial interface before and after the shearing event. The results indicate that the adhesive bonds are formed primarily by the interaction of oxygen atoms in the ice lattice with the atoms of the solid surface. A solid, which displays good lattice matching with ice, shows good adhesive strength. The adhesive strength is found to be proportional to the extent of mechanical interlocking and inversely proportional to the contact angle of the water droplet. An activation energy analysis of the adhesive strength shows that the failure of the ice/metal bond is rate sensitive while the ice/polymer bond is relatively insensitive to the strain rate. The failure of the ice/metal bond is cohesive while the failure of the ice/polymer bond is interfacial. The structure of the ice layers on metals is polycrystalline, which is marginally influenced by the crystalline structure of the substrate and shows increased ordering in vibrational modes. The sheared ice has a larger number of defects as reflected by the increase in the half-power bandwidth of the Raman peaks.

Citation
Nishikant Sonwalkar, S. Shyam Sunder, and S. K. Sharma, "Ice/Solid Adhesion Analysis Using Low-Temperature Raman Microprobe Shear Apparatus," Appl. Spectrosc. 47, 1585-1593 (1993)
http://www.opticsinfobase.org/as/abstract.cfm?URI=as-47-10-1585

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited