OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 47, Iss. 10 — Oct. 1, 1993
  • pp: 1585–1593

Ice/Solid Adhesion Analysis Using Low-Temperature Raman Microprobe Shear Apparatus

Nishikant Sonwalkar, S. Shyam Sunder, and S. K. Sharma

Applied Spectroscopy, Vol. 47, Issue 10, pp. 1585-1593 (1993)

View Full Text Article

Acrobat PDF (4703 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In order to understand the molecular mechanics involved in the adhesion of a bimaterial interface bond, a Raman microprobe shear apparatus has been designed and fabricated. The apparatus is fabricated to perform a pure shear experiment on a bimaterial interface produced by the vapor deposition of a thin film of ice on a cold metallic substrate under a controlled temperature, humidity, and vapor-flow rate environment. The textures of four metal surfaces (titanium, copper, aluminum, stainless steel) and one polymer surface have been investigated with the use of the scanning electron micrograph. The shear experiment is optically coupled to a Raman microprobe at the 180° and 135° scattering geometry. The Raman spectra provide in situ information regarding the molecular structure and vibrational modes at the bimaterial interface before and after the shearing event. The results indicate that the adhesive bonds are formed primarily by the interaction of oxygen atoms in the ice lattice with the atoms of the solid surface. A solid, which displays good lattice matching with ice, shows good adhesive strength. The adhesive strength is found to be proportional to the extent of mechanical interlocking and inversely proportional to the contact angle of the water droplet. An activation energy analysis of the adhesive strength shows that the failure of the ice/metal bond is rate sensitive while the ice/polymer bond is relatively insensitive to the strain rate. The failure of the ice/metal bond is cohesive while the failure of the ice/polymer bond is interfacial. The structure of the ice layers on metals is polycrystalline, which is marginally influenced by the crystalline structure of the substrate and shows increased ordering in vibrational modes. The sheared ice has a larger number of defects as reflected by the increase in the half-power bandwidth of the Raman peaks.

Nishikant Sonwalkar, S. Shyam Sunder, and S. K. Sharma, "Ice/Solid Adhesion Analysis Using Low-Temperature Raman Microprobe Shear Apparatus," Appl. Spectrosc. 47, 1585-1593 (1993)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited