Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 47,
  • Issue 9,
  • pp. 1367-1369
  • (1993)

Molecular Orientation in Polymer-Dispersed Liquid Crystals Using Time-Resolved FT-IR

Not Accessible

Your library or personal account may give you access

Abstract

Molecular orientation of nematic microdroplets in polymer-dispersed liquid crystal (PDLC) films has been investigated by time-resolved FT-IR (TR/FT-IR) in the presence of an applied electric field. Two kinds (fast and slow) of reorientation processes are found, and these may be attributed to reorientation of liquid crystal molecules at the surface and the central region of droplets. In addition, an induction time has been observed before the onset of the actual reorientation. It is suggested that there are no essential differences between rigid and flexible molecular segments with respect to reorientation dynamics of at least 1 ms time resolution. TR and micro-FT-IR techniques have been combined in order to study the reorientation dynamics of the different regions of droplets.

PDF Article
More Like This
Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals

Chia-Ming Chang, Yi-Hsin Lin, Victor Reshetnyak, Chui Ho Park, Ramesh Manda, and Seung Hee Lee
Opt. Express 25(17) 19807-19821 (2017)

Orientational photorefractive effects observed in polymer-dispersed liquid crystals

Hiroshi Ono and Nobuhiro Kawatsuki
Opt. Lett. 22(15) 1144-1146 (1997)

Polarization-independent optical fiber modulator by use of polymer-dispersed liquid crystals

Kuniharu Takizawa, Kenichi Kodama, and Kiyoshi Kishi
Appl. Opt. 37(15) 3181-3189 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved