Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 47,
  • Issue 9,
  • pp. 1430-1437
  • (1993)

Pulsed Laser Photolysis Time-Resolved FT-IR Emission Studies of Molecular Dynamics

Not Accessible

Your library or personal account may give you access

Abstract

Time-resolved Fourier transform infrared (FT-IR) emission experiments are used to study photofragmentation processes, single collision reactions, energy transfer events, and laser-initiated radical-radical reactions. In the experimental apparatus, a 200-Hz ArF excimer laser is coupled to a commercial 0.01-cm<sup>−1</sup> resolution Fourier transform infrared spectrometer. Fringes from the He:Ne reference laser are used for time synchronization of the laser pulses to the FT-IR mirror retardation. Following a short delay after the laser pulse, the analog-to-digital converter samples the signal on the infrared detector at several time delays. A number of fringes are then skipped and the process is repeated. At the start of the next mirror sweep, data for the first time points are acquired at different mirror positions, and the process is repeated until multiple interferograms are obtained at all time delays. Through the use of improved background-limited detectors and multipass collection optics, spectra from a number of small molecules have been obtained in various processes. We report here on the comprehensive details of our experimental apparatus and discuss several of the processes studied with the use of this apparatus.

PDF Article
More Like This
Fast time-resolved Fourier-transform spectroscopy for the study of transient chemical reactions

C. A. Carere, W. S. Neil, and J. J. Sloan
Appl. Opt. 35(16) 2857-2866 (1996)

Time-resolved study of laser emission in nitrogen gas pumped by two near IR femtosecond laser pulses

Rostyslav Danylo, Guillaume Lambert, Yi Liu, Vladimir Tikhonchuk, Aurélien Houard, and André Mysyrowicz
Opt. Lett. 46(6) 1253-1256 (2021)

Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy

Markus Brandstetter, Andreas Genner, Clemens Schwarzer, Elvis Mujagic, Gottfried Strasser, and Bernhard Lendl
Opt. Express 22(3) 2656-2664 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved