Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 48,
  • Issue 11,
  • pp. 1337-1346
  • (1994)

Characterization of a Radio-Frequency Glow Discharge/Time-of-Flight Mass Spectrometer

Not Accessible

Your library or personal account may give you access

Abstract

A radio-frequency glow discharge/time-of-flight mass spectrometer (RFGD-TOFMS) has been developed by simple modification of the interface to an ICP-TOFMS. The work described here evaluates the interface and operating conditions of the RFGD-TOFMS. The ion optics which focus ions toward the entrance of the TOFMS are the same as those used in the original ICP-TOFMS instrument. By means of pin-shaped brass samples of varied lengths, the sample-skimmer distance in the RFGD-TOFMS has been optimized at 4 mm. The discharge pressure and power have been found to be optimal at 50-60 W and 0.3 Torr, respectively. The application of small negative potentials to the skimmer cone (extraction orifice) was found to improve signals marginally. However, higher negative potentials reduced both signal levels and resolving power. The skimmer potential also affects the final kinetic energy of the ions before their extraction into the TOFMS. At 0.3 Torr all ions extracted for mass analysis have approximately the same kinetic energy, which can be estimated in the orthogonal TOFMS. Detection limits for several standard samples are at the single-ppm level, which is not unexpected; with the same ion-optical system, the current ICP-TOFMS also produces detection limits that are 2-3 orders of magnitude worse than those of many commercial instruments.

PDF Article
More Like This
Glow Discharge Resonance

A. B. Stewart
J. Opt. Soc. Am. 45(8) 651-657 (1955)

Measurement of the isotope selectivity of the strontium magneto-optical trap by a time-of-flight mass spectrometer

Kwang-Hoon Ko, You-Kyoung Lim, Do-Young Jeong, Hyunmin Park, Taek-Soo Kim, Gwon Lim, and Hyung Ki Cha
J. Opt. Soc. Am. B 23(12) 2465-2469 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved