Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 48,
  • Issue 5,
  • pp. 630-637
  • (1994)

Characterization of Plasma-Modified Fluoropolymer Surfaces Using Steady-State and Time-Resolved Fluorescence Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Poly(hexafluoropropylene-co-tetrafluoroethylene) (FEP) has been widely used in biotechnology because of its unique surface properties and biocompatibility. Recent work from our group has shown that plasma discharge-modified FEP can be used as the substratum for development of a very stable immunosensor. This result has prompted us to study further this new surface under ambient conditions. In this paper, we report on the covalent immobilization of a pyrene residue (-Py) onto FEP-APS (FEP-aminopropyl silane) surfaces and the characterization of FEP-APS-Py using steady-state and time-resolved fluorescence spectroscopy. Among the immobilization schemes tested, we found that the covalent coupling of pyrene-sulfonyl chloride to FEP-APS is the easiest and yields the most photostable FEP-APS-Py derivative. Steady-state emission spectra of FEP-APS-Py in contact with H<sub>2</sub>O, β-cyclodextrin (β-CD), and sodium dodecylsulfate (SDS) aqueous solutions differ considerably from those of Py-SO<sub>3</sub><sup>-</sup> in solution. Time-resolved fluorescence spectroscopy of FEP-APS-Py demonstrates that the decay kinetics are strongly affected by the presence of ionic quenchers and molecular oxygen, as well as β-CD and SDS. The results are consistent with the suggestion that the APS-Py moiety undergoes a slow time-dependent reconfiguration at the FEP/APS interface.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.