Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 10,
  • pp. 1454-1462
  • (1995)

Spectroscopic Studies of the Migration of Vanadium in the Model Fluid Catalytic Cracking Process

Not Accessible

Your library or personal account may give you access

Abstract

In order to help eliminate the deleterious effects of vanadium metals (from crude oil) on fluid cracking catalysts (FCCs) during the FCC process, spectroscopic studies on the migration of vanadium metal poisons on model FCCs have been carried out. Fresh samples of Eu-Y zeolite and AAA (aluminosilicate gel: 25% SiO<sub>2</sub> and 75% Al<sub>2</sub>O<sub>3</sub>) matrix have been impregnated separately with vanadyl naphthenate [V(n)], vanadium(3+) acetylacetonate [V(acac)], and vanadyl tetraphenylporphine [V(TPP)]. Also, mixtures of vanadium-impregnated Eu-Y with an AAA matrix or vanadium-impregnated AAA matrix with Eu-Y were prepared, respectively. The mixtures were calcined at 540°C in flowing dry air or steamed at 730°C under hydrothermal conditions after calcination. Spectroscopic studies by energy-dispersive X-ray (EDX) analysis, scanning electron microscopy (SEM), surface area analysis [Brunauer- Emmett-Teller (BET)], electron paramagnetic resonance (EPR) spectroscopy, and luminescence were used for the study of vanadium migration between the FCC components, for the detection of the vanadium intermediates on each component during the FCC process and also to generalize the migration behavior of different vanadium precursors under calcination and steaming conditions. Vanadium species from three vanadium precursors migrated from the AAA matrices to Eu-Y or vice versa during the steaming stage. During calcining, vanadium species from V(acac) or V(n) impregnated into Eu-Y or AAA did not migrate, while small amounts of migration of V(TPP) on Eu-Y or AAA could be detected occasionally, indicating that migration during calcination, unlike migration during steaming, depended on the vanadium species. These observations and spectroscopic information may be useful for vanadium poison passivation.

PDF Article
More Like This
Study of photon migration with various source-detector separations in near-infrared spectroscopic brain imaging based on three-dimensional Monte Carlo modeling

Cheng-Kuang Lee, Chia-Wei Sun, Po-Lei Lee, Hsiang-Chieh Lee, C. C. Yang, Cho-Pei Jiang, Yuh-Ping Tong, Tzu-Chen Yeh, and Jen-Chuen Hsieh
Opt. Express 13(21) 8339-8348 (2005)

Spectroscopic studies of wood-drying processes

Mats Andersson, Linda Persson, Mikael Sjöholm, and Sune Svanberg
Opt. Express 14(8) 3641-3653 (2006)

Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS

José L. Tarazona, Jáder Guerrero, Rafael Cabanzo, and E. Mejía-Ospino
Appl. Opt. 51(7) B108-B114 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved