Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 12,
  • pp. 1756-1761
  • (1995)

Flocculation Gradient Technique in Terms of Kubelka–Munk Coefficients: Quantifying Black-Pigmented Dispersions

Not Accessible

Your library or personal account may give you access

Abstract

The diffuse reflectance from a painted layer depends upon the layer thickness. The rate of change of diffuse reflectance when thickness increases is the flocculation gradient, which is valuable information about the degree of pigment dispersion in paint. The simple determination method is called the flocculation gradient technique and is suitable to quantify the pigment dispersions in low-absorptive and high-scattering paints. To make the method useful for black-pigmented paints as well, we modified it by applying the Kubelka-Munk theory. This makes it possible to solve the problem of the very narrow linearity region that appears in the diffuse reflectance vs. thickness curve because of high absorption. The modified method allows one to quantify the degree of dispersion in black thickness-sensitive spectrally selective paints, which are used as absorbers in solar collectors.

PDF Article
More Like This
Absorption and scattering of light by pigment particles in solar-absorbing paints

Marta Klanjšek Gunde and Zorica Crnjak Orel
Appl. Opt. 39(4) 622-628 (2000)

Kubelka–Munk Coefficients from Transmittance*

B. Patrick Caldwell
J. Opt. Soc. Am. 58(6) 755-758 (1968)

Optical characterization method for black pigments applied to solar-selective absorbing paints

Tuquabo Tesfamichael, Anders Hoel, Gunnar A. Niklasson, Ewa Wäckelgård, Marta K. Gunde, and Zorica C. Orel
Appl. Opt. 40(10) 1672-1681 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.