Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 12,
  • pp. 1776-1780
  • (1995)

Effects of Noise on the Interpolation Accuracy for Apodized FFT Spectra of Time-Domain Damped Signals

Not Accessible

Your library or personal account may give you access

Abstract

Interpolation formulas for the apodized magnitude-mode fast Fourier transformed (FFT) spectra determine accurately the frequency, damping constant, and amplitude of time-domain damped signals. However, additive noise causes a large amount of error in interpolation. In this paper, we obtain, theoretically, the frequency-domain signal-to-noise (S/N) ratio due to windowing by the function of sin<sup>α</sup>(<i>X</i>) and quantization with finite bit-length analog-to-digital (A/D) converters. Then, with the use of the squared ratios between three magnitudes nearest to the peak maximum on the apodized FFT spectrum, we derive the relationship equation between the frequency error and the S/N ratio. The results obtained by computer simulation of experimental conditions (i.e., sampling, quantization, windowing, FFT, and interpolation) for the Hanning window (α = 2) agree well with the theoretical calculations; the frequency errors decrease with increasing bit-length of the A/D converter. These observed errors are unavoidable because A/D converters are indispensable for measurements with Fourier transform spectrometers. Furthermore, as shown theoretically, the observed accuracy of interpolation is inversely proportional to the S/N ratio, provided that the S/N ratio is below the value due to quantization and windowing.

PDF Article
More Like This
Apodization and Interpolation in Fourier-Transform Spectroscopy*

A. S. Filler
J. Opt. Soc. Am. 54(6) 762-767 (1964)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.