Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 2,
  • pp. 193-199
  • (1995)

Hybrid Substrates for Real-Time SERS-Based Chemical Sensors

Not Accessible

Your library or personal account may give you access

Abstract

Since the discovery of the surface-enhanced Raman scattering (SERS) effect, numerous substrate designs have been proposed for a variety of analytical applications. Although many of these have offered exceptional electromagnetic enhancement, the durability and reusability of substrates have not always been acceptable for routine analytical use. This paper discusses the design and testing of a new class of hybrid SERS substrates specifically designed to optimize electromagnetic enhancement while also affording exceptional ruggedness and reversibility of response under challenging conditions. Substrate templates are fabricated lithographically into a quartz surface, then a thin metal film is deposited, and finally the entire surface is coated with a protective layer. Examples of inorganic and organic protective coatings are provided. Analytes are measured in flowing streams of airborne vapor and aqueous liquid. Properly designed surface coatings serve a dual role as both a protective layer and as a rapidly reversible selective adsorbent for specific analytes.

PDF Article
More Like This
SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles

Yu Guo, Jing Yu, Chonghui Li, Zhen Li, Jie Pan, Aihua Liu, Baoyuan Man, Tianfu Wu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21784-21796 (2018)

3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

Highly reliable SERS substrate based on plasmonic hybrid coupling between gold nanoislands and periodic nanopillar arrays

Munsik Choi, Soogeun Kim, Seung Ho Choi, Hyeong-Ho Park, and Kyung Min Byun
Opt. Express 28(3) 3598-3606 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved