Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 6,
  • pp. 857-860
  • (1995)

Remote Elemental Analysis by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Cable

Not Accessible

Your library or personal account may give you access

Abstract

The elemental composition of solids can be determined rapidly and simply with the use of laser-induced breakdown spectroscopy (LIBS). This method, described in detail elsewhere, uses powerful laser pulses to form a microplasma or spark on a sample. A small amount of material is vaporized, and emitting species in the plasma are identified by spectrally and temporally resolving the spark light. Although LIBS measurements can be performed remotely on solids at distances up to 24 m from the laser and detection system with a long-focal-length lens, this method has some disadvantages including safety (the possibility of ocular damage by the high-energy laser pulses), need for a clear line of sight to the analysis area, scattering of incident pulse energy by dusts or fogs, and problems associated with precise focusing of laser beams at long distances. In particular, the plasma will preferentially form on dust particles in front of the sample because of the long Rayleigh length of the focused beam.

PDF Article
More Like This
Elemental analysis of cotton by laser-induced breakdown spectroscopy

Emily R. Schenk and Jose R. Almirall
Appl. Opt. 49(13) C153-C160 (2010)

Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri
Appl. Opt. 51(20) 4612-4621 (2012)

Elemental analysis of laser induced breakdown spectroscopy aided by an empirical spectral database

Steven Rock, Aristides Marcano, Yuri Markushin, Chandran Sabanayagam, and Noureddine Melikechi
Appl. Opt. 47(31) G99-G104 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved