Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 7,
  • pp. 955-963
  • (1995)

Matrix Isolation/Fourier Transform Infrared Spectrometry of Laser-Desorbed Species

Not Accessible

Your library or personal account may give you access

Abstract

Initial results are presented for a novel experimental arrangement which allows the successful study of laser-desorbed neutral species under matrix isolation conditions. In the current work, a pulsed carbon dioxide laser (10.6 μm) is employed for laser desorption. With the combination of a previously described cryogenic trapping technique with coaxial matrix isolation gas (xenon or argon) introduction, laser-desorbed neutrals have been matrix isolated and their Fourier transform infrared spectra recorded. Two different cinnamic acid derivatives (<i>p</i>-coumaric acid and sinapinic acid) typically employed for matrix-assisted laser ionization (MALDI) mass spectrometry were utilized to demonstrate this new technique. Experimental conditions were determined for optimal matrix isolation of the laser-desorbed species. Two different desorption geometries were examined with respect to their effectiveness for matrix isolation of desorbed neutrals. A covalent dimer of <i>p</i>-coumaric acid produced in an external UV photoreactor and thought to be a possible photoreaction product in UV MALDI was studied by this technique. Thermal degradation of this dimer is shown to occur above threshold irradiance for laser desorption.

PDF Article
More Like This
Molecular analysis by ionization of laser-desorbed neutral species

Keith R. Lykke, Peter Wurz, Deborah H. Parker, and Michael J. Pellin
Appl. Opt. 32(6) 857-866 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.