Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 1,
  • pp. 115-118
  • (1996)

Energy-Gap Law and Room-Temperature Phosphorescence of Polycyclic Aromatic Hydrocarbons Adsorbed on Cyclodextrin/Sodium Chloride Solid Matrices

Not Accessible

Your library or personal account may give you access

Abstract

The energy-gap law was shown to be applicable to the room-temperature solid-matrix phosphorescence of polycyclic aromatic compounds adsorbed on cyclodextrin/salt matrices. No heavy atom was used to enhance the phosphorescence signals. As the energy gap between the lowest excited triplet state and ground state increased, the phosphorescence lifetime of the phosphor increased. The changes in the phosphorescence lifetimes were correlated with the magnitude of the nonradiative rate constants which, in turn, were related to the energy gap between the excited triplet state and ground state. With the correlations developed, it is possible to predict which polycyclic aromatic hydrocarbons will give strong solid-matrix phosphorescence.

PDF Article
More Like This
Room temperature phosphorescence from Si-doped-CD-based composite materials with long lifetimes and high stability

Guangqi Hu, Yixuan Xie, Xiaokai Xu, Bingfu Lei, Jianle Zhuang, Xuejie Zhang, Haoran Zhang, Chaofan Hu, Wenshi Ma, and Yingliang Liu
Opt. Express 28(13) 19550-19561 (2020)

Polymeric Matrices for Organic Phosphors*

Nicholas Geacintov, Gerald Oster, and Thomas Cassen
J. Opt. Soc. Am. 58(9) 1217-1229 (1968)

Simultaneous one-dimensional visualization of OH, polycyclic aromatic hydrocarbons, and soot in a laminar diffusion flame

Francesco Cignoli, Sergio Benecchi, and Giorgio Zizak
Opt. Lett. 17(4) 229-231 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved