OSA's Digital Library

Applied Spectroscopy

Applied Spectroscopy


  • Vol. 50, Iss. 3 — Mar. 1, 1996
  • pp: 366–376

Investigation of Sample Atomization Using a Power-Modulated Radio-Frequency Glow Discharge Source

Mark Parker and R. Kenneth Marcus

Applied Spectroscopy, Vol. 50, Issue 3, pp. 366-376 (1996)

View Full Text Article

Acrobat PDF (1044 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A power-modulated (pulsed), radio-frequency glow discharge source by atomic absorption spectrophotometry (rf-GD-AAS) atomizer was used to evaluate the roles of applied power, pressure, orifice diameter, duty cycle, and power-on time in the production of gas-phase sample atoms. As expected, the response of the modulated rf-GD-AAS source generally followed the same trends as those exhibited by the more common continuous-powering scheme. The effects of discharge power and pressure on the observed plasma emission and absorbance transients are presented. Use of small duty cycles and higher instantaneous powers, thus keeping the same overall average power as in the continuous mode, was shown to increase the production of ground-state atoms. However, using very high instantaneous powers may more efficiently populate excited states of the atomic species, thus decreasing the observed absorption signal for resonant transitions. Individual pulse transients were shown to be distorted if the plasma "on" times approached periods down to 2 ms. Plasma stabilization times for measurements taken in the "dark" portion of the pulse cycle (i.e., after pulse termination) were comparable to those obtained in the continuous mode (on the order of a few seconds) with the use of the same source and sample. Calibration curves were used to investigate the analytical utility of different temporal regions of the absorption transients with comparisons made between the plasma "on" and "off" portions of the cycle in the quantification of continuous plasma operation.

Mark Parker and R. Kenneth Marcus, "Investigation of Sample Atomization Using a Power-Modulated Radio-Frequency Glow Discharge Source," Appl. Spectrosc. 50, 366-376 (1996)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited